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Memory Cache

•Memory is slow

•Cache: a small bank of fast memory.
Exploit locality to improve performance

• Stores recently accessed data for
quick future access
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Cache operations

•Accessing memory brings 
it to the cache
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Cache operations

•Accessing memory brings 
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• Flushing memory evicts it 
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Cache Side channel

•Measuring access time 
tells us whether a 
location is cached or not
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Cache construction

•Memory locations mapped to sets

• Each set can store multiple blocks

•Replacement policy decides
where
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Prime+Probe
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Prime+Probe

• Fill a cache set with data

•Wait a bit

•Measure access time to data

•Can monitor other programs!
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Probe Rate

•How fast can we probe the cache?

• Limited temporal resolution
• Thousands of cycles

•Prime+Scope (CCS 2021) – 70 cycles
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Prime+Scope (CCS 2021)

•Carefully arrange data in different cache levels

•Victim access evicts LLC line

→ Line also evicted from L1

• “Scoping”: Repeatedly measure access time in L1
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Prime+Scope code
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uint32_t scope(char * address) {

  uint32_t start = rdtscp();

  char t = *address;

  uint32_t end = rdtscp();

  return end – start;

}

30 cycles

30 cycles

5 cycles
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uint32_t scope(char * address) {

  uint32_t start = rdtscp();

  char t = *address;

  uint32_t end = rdtscp();

  return end – start;

}

30 cycles

30 cycles

5 cycles

5 cycles

Measuring time is an order of magnitude 
slower than a cache access



Micro-architectural Weird Gates
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Micro-architectural Weird Gates

•Recent works perform computation using transient execution

• Interesting applications
• Obfuscation
• Amplification
• Decoupling cache probe from measurement
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Logical State of Cache

•Associate a logical value with 
memory addresses
• TRUE – address is cached
• FALSE – address is not cached
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memory addresses
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Logical State of Cache

•Associate a logical value with 
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

• Flushing sets a value to FALSE

•Accessing memory sets a value to 
TRUE (may also set another to 
FALSE)

•Measuring access time observes 
value (and set to TRUE)
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Conditional access

•What is the cache state of 
*out after execution?

if (*in == 0)

    return;

out += 0;

out += 0;

a = *out
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Conditional Speculative Execution
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Weird NOT gate
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Branch mispredicted
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Thinking about this
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Chains

Thinking about this
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Weird Prime+Scope

•Gates of Time (USENIX 2023) decouple Prime+Probe from time 
measurement: “Prime+Store”
• Probe using NAND gate and store in cache
• Measure cache state later

• First Step: Can apply to Prime+Scope
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Using Prime+Store

•Using optimized gate construction: 48 cycles.

•48 < 70

• Still very slow.
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Multiple Probes

• Large overhead per scope
• Mostly unavoidable
• Misspeculation alone costs 19 cycles

•Can we amortize?
• Want multiple probes per gate
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Tapped multi-probed gates
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Tapped multi-probed gates
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Tapped multi-probed gates
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Gate operation time
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Gate resolution
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Results

• For short runs, 5 cycles resolution

• Sustained 10 cycles/probe, albeit non-uniform

• Techniques for handling non-uniform probing
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Attacking S-Box based AES

• S-Box based implementations are harder to attack
• Only 4 cache lines, and more accesses
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Attacking S-Box based AES

• S-Box based implementations are harder to attack
• Only 4 cache lines, and more accesses

•Need to distinguish precise AES round

•Prior works need either
• Non-trivial OS control
• Utilize the deprecated Intel TSX
• Modify the original code
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Attacking S-Box based AES

• Full key recovery of AES128 using Spec-o-Scope

•Requires ≈10,000 traces

•Collected in less than 3 seconds
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Summary
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Summary

• Identify time measurement as rate limit

•Multi-probe weird gates allow to sample faster

•Attacking S-Box AES is possible
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