
Spec-o-Scope: Cache Probing at
Cache Speed

Gal Horowitz, Eyal Ronen, Yuval Yarom

Memory Cache

•Memory is slow

•Cache: a small bank of fast memory.
Exploit locality to improve performance

• Stores recently accessed data for
quick future access

2

Processor

Memory

Cache

Cache operations

•Accessing memory brings
it to the cache

3

Cache operations

•Accessing memory brings
it to the cache

3

Cache operations

•Accessing memory brings
it to the cache

• Flushing memory evicts it
from the cache

3

Cache Side channel

•Measuring access time
tells us whether a
location is cached or not

4

Cache construction

•Memory locations mapped to sets

• Each set can store multiple blocks

•Replacement policy decides
where

5Sets
W

ays

Prime+Probe

6

Prime+Probe

• Fill a cache set with data

6

Prime+Probe

• Fill a cache set with data

•Wait a bit

6

Prime+Probe

• Fill a cache set with data

•Wait a bit

•Measure access time to data

6

Prime+Probe

• Fill a cache set with data

•Wait a bit

•Measure access time to data

6

Prime+Probe

• Fill a cache set with data

•Wait a bit

•Measure access time to data

6

Prime+Probe

• Fill a cache set with data

•Wait a bit

•Measure access time to data

•Can monitor other programs!

6

Probe Rate

•How fast can we probe the cache?

• Limited temporal resolution
• Thousands of cycles

•Prime+Scope (CCS 2021) – 70 cycles

7

Prime+Scope (CCS 2021)

•Carefully arrange data in different cache levels

•Victim access evicts LLC line

→ Line also evicted from L1

• “Scoping”: Repeatedly measure access time in L1

8

Prime+Scope code

9

uint32_t scope(char * address) {

 uint32_t start = rdtscp();

 char t = *address;

 uint32_t end = rdtscp();

 return end – start;

}

30 cycles

30 cycles

5 cycles

5 cycles

Prime+Scope code

9

uint32_t scope(char * address) {

 uint32_t start = rdtscp();

 char t = *address;

 uint32_t end = rdtscp();

 return end – start;

}

30 cycles

30 cycles

5 cycles

5 cycles

Measuring time is an order of magnitude
slower than a cache access

Micro-architectural Weird Gates

10

Micro-architectural Weird Gates

•Recent works perform computation using transient execution

• Interesting applications
• Obfuscation
• Amplification
• Decoupling cache probe from measurement

10

Logical State of Cache

•Associate a logical value with
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

Processor

Memory

Cache

11

F F F T F F F F T F F F F

Logical State of Cache

•Associate a logical value with
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

Processor

Memory

Cache

11

F F F T F F F F T F F F F

Logical State of Cache

•Associate a logical value with
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

• Flushing sets a value to FALSE

Processor

Memory

Cache

F

11

F F F T F F F F T F F F F

Logical State of Cache

•Associate a logical value with
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

• Flushing sets a value to FALSE

•Accessing memory sets a value to
TRUE (may also set another to
FALSE)

Processor

Memory

Cache

F T

11

F F F T F F F F T F F F F

Logical State of Cache

•Associate a logical value with
memory addresses
• TRUE – address is cached
• FALSE – address is not cached

• Flushing sets a value to FALSE

•Accessing memory sets a value to
TRUE (may also set another to
FALSE)

•Measuring access time observes
value (and set to TRUE)

Processor

Memory

Cache

F T

11

Conditional access

•What is the cache state of
*out after execution?

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

12

Conditional access

•What is the cache state of
*out after execution?

• TRUE if *in != 0.

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

12

Conditional access

•What is the cache state of
*out after execution?

• TRUE if *in != 0.

•What if *in == 0?

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

12

Conditional access

•What is the cache state of
*out after execution?

• TRUE if *in != 0.

•What if *in == 0?

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

12

Assume *in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

13

Assume
*in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

• Evaluation of branch
conditions can take time

13

Assume
*in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

• Evaluation of branch
conditions can take time

• The CPU predicts future
execution
• Correct prediction – win
• Incorrect prediction – rollback

13

Assume
*in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

• Evaluation of branch
conditions can take time

• The CPU predicts future
execution
• Correct prediction – win
• Incorrect prediction – rollback
• Microarchitectural state

remains

13

Assume
*in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

• Evaluation of branch
conditions can take time

• The CPU predicts future
execution
• Correct prediction – win
• Incorrect prediction – rollback
• Microarchitectural state

remainsMay be executed
even if *in == 0

13

Assume
*in == 0

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Speculative execution

• Evaluation of branch
conditions can take time

• The CPU predicts future
execution
• Correct prediction – win
• Incorrect prediction – rollback
• Microarchitectural state

remainsMay be executed
even if *in == 0

13

Assume
*in == 0

Assume branch
mispredicted

Conditional Speculative Execution

14

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Conditional Speculative Execution

14

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Load *in

Load *out

branch

Delay

Conditional Speculative Execution

14

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Load *in

Load *out

branch

Delay

Conditional Speculative Execution

14

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Load *in

Load *out

branch

Delay

Conditional Speculative Execution

14

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Load *in

Load *out

branch

*in cached *in not cached

Load *in

Load *out

branch

Delay Delay

Weird NOT gate

15

Assume
*in == 0

Branch mispredicted

if (*in == 0)

 return;

out += 0;

out += 0;

a = *out

Load *in Delay

Load *out

branch

Load *in Delay

Load *out

branch

*in cached *in not cached

*in *out

TRUE FALSE

FALSE TRUE

out NOT(in)

Thinking about this

16

Thinking about this

17

Load *in Delay

Load *out

branch

Chains

Thinking about this

17

Load *in Delay

Load *out

branch

Chains

Thinking about this

17

Load *in Delay

Load *out

branch

Signal

Chains

Thinking about this

17

Load *in Delay

Load *out

branch

Signal

Control

Chains

Thinking about this

17

Load *in Delay

Load *out

branch

Signal

Control

Delay

Chains

Thinking about this

17

Load *in Delay

Load *out

branch

Signal

Probe

Control

Delay

Weird Prime+Scope

•Gates of Time (USENIX 2023) decouple Prime+Probe from time
measurement: “Prime+Store”
• Probe using NAND gate and store in cache
• Measure cache state later

• First Step: Can apply to Prime+Scope

18

Using Prime+Store

•Using optimized gate construction: 48 cycles.

•48 < 70

• Still very slow.

19

Multiple Probes

• Large overhead per scope
• Mostly unavoidable
• Misspeculation alone costs 19 cycles

•Can we amortize?
• Want multiple probes per gate

20

Tapped multi-probed gates

21

Tapped multi-probed gates

22

Load *in Delay

Load *o3

return

Delay

Load *o2

Load *in

Load *in Delay

Load *o1

Tapped multi-probed gates

23

Load *in

Delay

Load *o3

return

Delay

Load *o2

Load *in

Load *in Delay

Load *o1

Tapped multi-probed gates

24

Load *in

Delay

Load *o3

return

Delay

Load *o2

Load *in

Load *in Delay

Load *o1

Gate operation time

25

Gate resolution

26

Results

27

Results

• For short runs, 5 cycles resolution

27

Results

• For short runs, 5 cycles resolution

• Sustained 10 cycles/probe, albeit non-uniform

27

Results

• For short runs, 5 cycles resolution

• Sustained 10 cycles/probe, albeit non-uniform

• Techniques for handling non-uniform probing

27

Attacking S-Box based AES

• S-Box based implementations are harder to attack
• Only 4 cache lines, and more accesses

28

Attacking S-Box based AES

• S-Box based implementations are harder to attack
• Only 4 cache lines, and more accesses

•Need to distinguish precise AES round

28

Attacking S-Box based AES

• S-Box based implementations are harder to attack
• Only 4 cache lines, and more accesses

•Need to distinguish precise AES round

•Prior works need either
• Non-trivial OS control
• Utilize the deprecated Intel TSX
• Modify the original code

28

Attacking S-Box based AES

• Full key recovery of AES128 using Spec-o-Scope

•Requires ≈10,000 traces

•Collected in less than 3 seconds

29

Summary

30

Summary

• Identify time measurement as rate limit

30

Summary

• Identify time measurement as rate limit

•Multi-probe weird gates allow to sample faster

30

Summary

• Identify time measurement as rate limit

•Multi-probe weird gates allow to sample faster

•Attacking S-Box AES is possible

30

	Slide 1: Spec-o-Scope: Cache Probing at Cache Speed
	Slide 2: Memory Cache
	Slide 3: Cache operations
	Slide 4: Cache operations
	Slide 5: Cache operations
	Slide 6: Cache Side channel
	Slide 7: Cache construction
	Slide 8: Prime+Probe
	Slide 9: Prime+Probe
	Slide 10: Prime+Probe
	Slide 11: Prime+Probe
	Slide 12: Prime+Probe
	Slide 13: Prime+Probe
	Slide 14: Prime+Probe
	Slide 15: Probe Rate
	Slide 16: Prime+Scope (CCS 2021)
	Slide 17: Prime+Scope code
	Slide 18: Prime+Scope code
	Slide 19: Micro-architectural Weird Gates
	Slide 20: Micro-architectural Weird Gates
	Slide 21: Logical State of Cache
	Slide 22: Logical State of Cache
	Slide 23: Logical State of Cache
	Slide 24: Logical State of Cache
	Slide 25: Logical State of Cache
	Slide 26: Conditional access
	Slide 27: Conditional access
	Slide 28: Conditional access
	Slide 29: Conditional access
	Slide 30: Speculative execution
	Slide 31: Speculative execution
	Slide 32: Speculative execution
	Slide 33: Speculative execution
	Slide 34: Speculative execution
	Slide 35: Speculative execution
	Slide 36: Conditional Speculative Execution
	Slide 37: Conditional Speculative Execution
	Slide 38: Conditional Speculative Execution
	Slide 39: Conditional Speculative Execution
	Slide 40: Conditional Speculative Execution
	Slide 41: Weird NOT gate
	Slide 42: Thinking about this
	Slide 43: Thinking about this
	Slide 44: Thinking about this
	Slide 45: Thinking about this
	Slide 46: Thinking about this
	Slide 47: Thinking about this
	Slide 48: Thinking about this
	Slide 49: Weird Prime+Scope
	Slide 50: Using Prime+Store
	Slide 51: Multiple Probes
	Slide 52: Tapped multi-probed gates
	Slide 53: Tapped multi-probed gates
	Slide 54: Tapped multi-probed gates
	Slide 55: Tapped multi-probed gates
	Slide 56: Gate operation time
	Slide 57: Gate resolution
	Slide 58: Results
	Slide 59: Results
	Slide 60: Results
	Slide 61: Results
	Slide 62: Attacking S-Box based AES
	Slide 63: Attacking S-Box based AES
	Slide 64: Attacking S-Box based AES
	Slide 65: Attacking S-Box based AES
	Slide 66: Summary
	Slide 67: Summary
	Slide 68: Summary
	Slide 69: Summary

