# Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities 

Achiya Bar-On
Nathan Keller


אוניברסיטת בר-אילן
Bar-Ilan University

Orr Dunkelman


Eyal Ronen
Adi Shamir


עכוֹ ויצמּ לִּדע
WEIZMANN INSTITUTE OF SCIENCE

## AES

- AES is the best known and most widely used secret key cryptosystem
- Almost all secure connections on the Internet use AES
- Its security had been analyzed for more than 20 years
- AES has either 10, 12, or 14 rounds depending on the key size (128, 192, 256 bits)
- To date there is no known attack on full AES which is significantly faster than exhaustive search


## Analyzing reduced round AES

- Interesting as a platform for analyzing the remaining security margins
- Several Light Weight Cryptosystems and Hash functions use 4 or 5 rounds AES as a building block
- 4-Round AES: ZORRO, LED and AEZ
- 5-Round AES: WEM, Hound and ELmD


## Analyzing reduced round AES

-There are 3 relevant parameters: Time (T), Memory (M) and Data (D)

- To combine these 3 complexity measures it is common to summarize them as a single number $\max (\mathrm{T}, \mathrm{M}, \mathrm{D})$ defined as their Total Complexity


## Best attacks on 5 round AES

- Only a few techniques led to successful attacks against 5-round AES

| Technique | Complexity <br> Max $(T, D, M)$ | Year |
| :--- | :--- | :--- |
| Square | $2^{32}$ | 2000 |
| Imp. Differential | $2^{32}$ | 2001 |
| Yoyo | $2^{32}$ | 2017 |

## Recent attacks on 5 rounds AES

- In 2017 a new technique (the multiple-of-8 attack [GRR, EC'17]) was proposed, and in 2018 Grassi had applied a special version of it (the mixturedifferentials attack) to 5 round AES
- However, its complexity was not better than previous attacks


## Best attacks on 5 round AES - updated

| Technique | Complexity <br> Max(T, D, M) | Year |
| :--- | :--- | :--- |
| Square | $2^{32}$ | 2000 |
| Imp. Differential | $2^{32}$ | 2001 |
| Yoyo | $2^{32}$ | 2017 |
| Grassi | $2^{32}$ | 2018 |

## Our new result

- Breaking the 20 years old $2^{32}$ barrier by a factor of 1000:

| Technique | Complexity <br> Max(T, D, M) | Year |
| :--- | :--- | :--- |
| Square | $2^{32}$ | 2000 |
| Imp. Differential | $2^{32}$ | 2001 |
| Yoyo | $2^{32}$ | 2017 |
| Grassi | $2^{32}$ | 2018 |
| Our new result | $2^{22}$ | 2018 |

## AES structure

- 10,12 , or 14 rounds, where each round of AES consists of:

- Extra ARK operation before the first round
- No Mix Column in the last round


## SB - SubBytes Operation



By User:Matt Crypto - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1118913

## SR - ShiftRows Operation



By User:Matt Crypto - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1118782

## MC - MixColumn Operation



By User:Matt Crypto - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1118874

## ARK - Add Round Key Operation



By User:Matt Crypto - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1118831

## The notation of mixtures (Grassi et. al 2017)

- What is a mixture of an AES state pair $(x, y)$ ?
X

| A1 |  |  |  |
| :--- | :--- | :--- | :--- |
| B1 |  |  |  |
| C1 |  |  |  |
| D1 |  |  |  |


| Y |  |  |  |
| :--- | :--- | :--- | :--- |
| A2   <br> B2   <br> C2   <br> D2   |  |  |  |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The notation of mixtures (Grassi et. al 2017)

- What is a mixture of an AES state pair $(x, y)$ ?

| X |
| :--- |
| A1    <br> B1    <br> C1    <br> D1    <br>     |



| A2 |  |  |  |
| :--- | :--- | :--- | :--- |
| B1 |  |  |  |
| C2 |  |  |  |
| D1 |  |  |  |


|  | Equal |
| :--- | :--- |
| $A$ | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The notation of mixtures (Grassi et. al 2017)

- What is a mixture of an AES state pair $(x, y)$ ?



## The notation of mixtures (Grassi et. al 2017)

- What is a mixture of an AES state pair $(x, y)$ ?


| A 1 |  |  |  |
| :--- | :--- | :--- | :--- |
| $\overline{\mathrm{~B} 2}$ |  |  |  |
| C 1 |  |  |  |
| D 2 |  |  |  |


| A2 |  |  |  |
| :--- | :--- | :--- | :--- |
| B1 |  |  |  |
| C2 |  |  |  |
| D1 |  |  |  |

## The notation of mixtures (Grassi et. al 2017)

- What is a mixture of an AES state pair $(x, y)$ ?


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |


| A 1 |  |  |  |
| :--- | :--- | :--- | :--- |
| B 2 |  |  |  |
| C 1 |  |  |  |
| D 2 |  |  |  |

## The evolution of mixtures under AES

- Consider the following 4 inputs to round i

| X |  |  |  |
| :--- | :---: | :---: | :---: |
| A1    <br> B1    <br> C1    <br> D1    <br> $Z$    |  |  |  |



## LET'S START!

| A1 |  |  |  |
| :--- | :--- | :--- | :--- |
| B2 |  |  |  |
| C1 |  |  |  |
| D2 |  |  |  |


| A2 |  |  |  |
| :--- | :--- | :--- | :--- |
| B1 |  |  |  |
| C2 |  |  |  |
| D1 |  |  |  |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Sub Byte


| A2* |  |  |  |
| :--- | :--- | :--- | :--- |
| B1* $^{*}$ |  |  |  |
| C2* |  |  |  |
| D1* |  |  |  |


|  | Equal |
| :--- | :--- |
| $A$ | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Shift Rows


W

| A2* |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  | B1* $^{*}$ |
|  |  | C2* $^{*}$ |  |
|  | D1* |  |  |


|  | Equal |
| :--- | :--- |
| $A$ | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Mix Column


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Mix Column


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Mix Column


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i after Add Round Key


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Input to round i+1


Z


w


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Round i+1 after Sub Byte

X


Z



W


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Implies weaker property in round i+1 after Sub Byte X


Z



W


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Implies weaker property in round i+1 after Sub Byte


Z

w


## The evolution of mixtures under AES

- Round i+1 after Shift Row, Mix Column and ARK X


Z

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |



W


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## The evolution of mixtures under AES

- Input to round i+2


Z

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


w


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Assume states ( $\mathrm{X}, \mathrm{Y}$ ) are equal in one of their diagonals

X

| $A$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | B |  |  |
|  |  | $C$ |  |
|  |  |  | $D$ |

Y


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Assume states $(X, Y)$ are equal in one of their diagonals X

| $A$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B$ |  |  |
|  |  | $C$ |  |
|  |  |  | $D$ |

- Then:

Z

| $A^{\prime}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B^{\prime}$ |  |  |
|  |  | $C^{\prime}$ |  |
|  |  |  | $D^{\prime}$ |


w

| $A^{\prime}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B^{\prime}$ |  |  |
|  |  | $C^{\prime}$ |  |
|  |  |  | $D^{\prime}$ |



|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Round i+2 after Sub Byte


Z


Y

w



|  | Equal |
| :--- | :--- |
| $A$ | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Round i+2 after Shift rows



|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |


w


## Extending this property to 4 rounds

- Round i+2 after Mix Column


W


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Round i+2 after Add Round Key


W


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Then in the input to round $i+3$ we get


Z
$\mathrm{n}^{*}{ }^{\prime} \mathrm{r}$

Y

w
 KEEP CALM

## IT'S

 ONLY ROUND 3|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Round i+3 after sub byte


Z
n $^{\wedge^{\prime}}$
48)

KEEP CALM

## IT'S

ONLY ROUND 3

|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## Extending this property to 4 rounds

- Round i+3 after Shift Rows and before Mix Column


Z


KEEP CALM

IT'S
ONLY ROUND 3

|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## AES 4 Round Distinguisher

- Last round of AES has no Mix Column


Z


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack (Grassi 18)

- Precede the 4 round distinguisher with an extra round before it

|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack (Grassi 18)

- Precede the 4 round distinguisher with an extra round before it
- We encrypt all possible values of $A, B, C, D$


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack (Grassi 18)

- Precede the 4 round distinguisher with an extra round before it
- We encrypt all possible values of $A, B, C, D$

| A |  |  |  |
| :--- | :--- | :--- | :--- |
|  | B |  |  |
|  |  | C |  |
|  |  |  | $D$ |

- Then as input to round 1 we get:

|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |


| $A^{\prime}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $B^{\prime}$ |  |  |  |
| $C^{\prime}$ |  |  |  |
| $D^{\prime}$ |  |  |  |

## A 5 Round AES Attack [Grassi 18]

- We look for a "good ciphertext pair", and get the plaintext

X ciphertext


X plaintext

| $A$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B$ |  |  |
|  |  | $C$ |  |
|  |  |  | $D$ |

Y ciphertext


Y plaintext

| $A^{\prime}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B^{\prime}$ |  |  |
|  |  | $C^{\prime}$ |  |
|  |  |  | $D^{\prime}$ |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack [Grassi 18]

- For all $2^{32}$ possible key bytes: partially encrypt (AKR, SB, SR, MC)

X partial round encryption

| $A^{*}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $B^{*}$ |  |  |  |
| $C^{*}$ |  |  |  |
| $D^{*}$ |  |  |  |

X plaintext

| $A$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B$ |  |  |
|  |  | $C$ |  |
|  |  |  | $D$ |

Y partial round encryption


Y plaintext


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack [Grassi 18]

## - Create a state mixture Z, W

X partial round encryption

| $A^{*}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $B^{*}$ |  |  |  |
| $C^{*}$ |  |  |  |
| $D^{*}$ |  |  |  |

Z partial round encryption

| $\mathrm{A}^{*}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{~B}^{\prime *}$ |  |  |  |
| $\mathrm{C}^{*}$ |  |  |  |
| $\mathrm{D}^{\prime *}$ |  |  |  |

Y partial round encryption


W partial round encryption

| $\mathrm{A}^{*}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{~B}^{*}$ |  |  |  |
| $\mathrm{C}^{\prime}$ |  |  |  |
| $\mathrm{D}^{*}$ |  |  |  |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack [Grassi 18]

- Partially decrypt Z and W

Z plaintext


Z partial round encryption

| $\mathrm{A}^{*}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{~B}^{\prime *}$ |  |  |  |
| $\mathrm{C}^{*}$ |  |  |  |
| $\mathrm{D}^{\prime *}$ |  |  |  |

W plaintext


W partial round encryption

| $A^{*} *$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $B^{*}$ |  |  |  |
| $C^{\prime}$ |  |  |  |
| $D^{*}$ |  |  |  |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |

## A 5 Round AES Attack [Grassi 18]

- Get $Z$ and $W$ ciphertexts, and check the equality condition
Z plaintext

| $A^{\circ}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B^{\circ}$ |  |  |
|  |  | $C^{\circ}$ |  |
|  |  |  | $D^{\circ}$ |


| $A^{\circ}$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $B^{\circ}$ |  |  |
|  |  | $C^{\circ \prime}$ |  |
|  |  |  | $D^{\circ \prime}$ |


|  | Equal |
| :--- | :--- |
| A | Specific Value |
|  | 4 values Xor to 0 |
|  | Arbitrary Value |



## Our attack ideas

## Attack

## Complexity

Grassi's original attack
$\mathrm{T}=2^{32}, \mathrm{D}=2^{32}, \mathrm{M}=2^{32}$

Our attack ideas

## Attack

## Complexity

Grassi's original attack
Reduce data to get one "good mixture" $\quad T=2^{47}, D=2^{24}, M=2^{24}$

## Our attack ideas

## Attack

## Complexity

Grassi's original attack
Reduce data to get one "good mixture"
$\mathrm{T}=2^{47}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}$
Switch order to iterate over pairs

## Our attack ideas

## Attack

## Complexity

Grassi's original attack

Reduce data to get one "good mixture"
Switch order to iterate over pairs
Use precomputed table
$\mathrm{T}=2^{32}, \mathrm{D}=2^{32}, \mathrm{M}=2^{32}$
$\mathrm{T}=2^{47}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}$
$\mathrm{T}=2^{33}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}$
$\mathrm{T}=2^{29}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}$

## Our attack ideas

## Attack

## Complexity

Grassi's original attack
Reduce data to get one "good mixture"
Switch order to iterate over pairs

$$
\mathrm{T}=2^{33}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}
$$

Use precomputed table

$$
\mathrm{T}=2^{29}, \mathrm{D}=2^{24}, \mathrm{M}=2^{24}
$$

Smart selection of input structure
$\mathrm{T}=2^{22}, \mathrm{D}=2^{22}, \mathrm{M}=2^{22}$

## Idea 1 - Reduce Data: The good

- There are many mixtures, but we only need one of them
- Grassi used $2^{32}$ data
- $2^{32}$ encryptions -> $2^{63}$ pairs -> $2^{31}$ good pairs
- We use only $2^{24}$ data
- $2^{24}$ encryptions -> $2^{47}$ pairs -> $2^{15}$ good pairs
- For each key and mixture type:

We have the mixture in our data with probability $\left(2^{24} / 2^{32}\right)^{2}=2^{-16}$

- There are $2^{15}$ pairs and 7 mixture types: We have a good mixture with probability $1-\left(1-2^{-16}\right)^{\left(7^{*} 2^{\wedge 15}\right)} \sim 0.97$


## Idea 1 - Reduce Data: The bad

- We can thus reduce the data complexity
- However, we need to go over all $2^{15}$ pairs
- So now $T=2^{32 *} 2^{15}=2^{47}$
- This is only a time $\backslash$ data tradeoff:
- We reduce the data by a factor of $2^{8}$
- While increasing the time by a factor of $2^{15}$


## Idea 2 - Switch Order: The good

- We can change the order of operations, iterating over all pairs of pairs:
- If we have a mixture after ARK, SB, SR and MC operations:

$$
X_{0}{ }^{\prime \prime} \oplus Y_{0}{ }^{\prime \prime} \oplus Z_{0}{ }^{\prime \prime} \oplus W_{0}{ }^{\prime \prime}=0
$$

- Holds for each byte separately, depending on a single key byte $S B\left(X_{0,0} \oplus k_{0}\right) \oplus S B\left(Y_{0,0} \oplus k_{0}\right) \oplus S B\left(Z_{0,0} \oplus k_{0}\right) \oplus S B\left(W_{0,0} \oplus k_{0}\right)=0$
- Can find a suggestion for each of the 4 key bytes independently
- Take the 4 key bytes and check for mixture after 1 round


## Idea 2 - Switch Order: The bad

- For each pair of pairs (quartet) we can get a 4 key bytes suggestion with $4^{*} 2^{8} \mathrm{~S}$-Box applications
- $2^{24}$ encryptions -> $2^{47}$ pairs -> $2^{15}$ "good pairs"
- $2^{29}$ quartets * $4 * 2^{8} \mathrm{~S}$ box $=2^{39} \mathrm{~S}$-Box $\sim 2^{33}$ encryptions


## Idea 3 - Precomputed Table

- We can use an optimized precomputed table
- Consider quartet of bytes of the form ( $0, a, b, c$ )
- For each quartet we find a k such as:

$$
S B(k) \oplus S B(a \oplus k) \oplus S B(b \oplus k) \oplus S B(c \oplus k)=0
$$

- We get ( $0, \mathrm{a}, \mathrm{b}, \mathrm{c}$ ) by $(0, \mathrm{y} \oplus x, \mathrm{z} \oplus x, \mathrm{w} \oplus x)$
- We get a table of size $2^{24}$
- The order is irrelevant so we can arrange in increasing order: save a factor of 6 to get $\sim 2^{(21.4)}$
- Precomputation can be optimize to use $\sim 2^{24}$ S Box applications


## Idea 4 - Smart Input Structure

- So far we get data and memory $2^{24}$ and time $2^{29}$
- We can use just $2^{22.25}$ data by a smarter choice of input

| $A$ |  |  |  |
| :--- | :--- | :--- | :--- |
|  | B |  |  |
|  |  | C |  |
|  |  |  |  |

- E.g., $A$ and $B$ can get all $2^{8}$ values each, $C$ gets $2^{6.25}$ possible values
- We get a boost of $2^{8}$ to the mixture probability from $2^{-63}$ to $2^{-55}$
- 3 possible mixtures instead of 7 , so in total $3^{*} 2^{-55}$


## Experimental Verification of Our Attack

- We have experimentally verified our theoretic analysis
- 4 possible amounts of data
- 200 different keys for each amount
- Calculated the partial and full key recovery probability

| Amount Of Data | 3 Byte recovery <br> probability | Full Key recovery <br> probability |
| :--- | :--- | :--- |
| $2^{22}$ | 0.5 | 0.031 |
| $2^{22.25}$ | 0.715 | 0.187 |
| $2^{22.5}$ | 0.935 | 0.715 |
| $2^{23}$ | 1 | 1 |

## Extending to 7 round AES

| Technique | Rounds | Data | Memory | Time |
| :--- | :--- | :--- | :--- | :--- |
| Gilbert-Minier | 7 | $2^{32}$ | $2^{80}$ | $2^{144}$ |
| Demirci-Selcuk | 7 | $2^{99}$ | $2^{98}$ | $2^{99}$ |
| Demirci-Selcuk | 7 | $2^{32}$ | $>2^{100}$ | $>2^{100}$ |
| Square | 7 (192-bit) | $2^{36}$ | $2^{36}$ | $2^{155}$ |
| Square | 7 (256-bit) | $2^{36}$ | $2^{36}$ | $2^{171}$ |

## Extending to 7 round AES

| Technique | Rounds | Data | Memory | Time |
| :--- | :--- | :--- | :--- | :--- |
| Gilbert-Minier | 7 | $2^{32}$ | $2^{80}$ | $2^{144}$ |
| Demirci-Selcuk | 7 | $2^{99}$ | $2^{98}$ | $2^{99}$ |
| Demirci-Selcuk | 7 | $2^{32}$ | $>2^{100}$ | $>2^{100}$ |
| Square | $7(192$-bit) | $2^{36}$ | $2^{36}$ | $2^{155}$ |
| Square | $7(256$-bit) | $2^{36}$ | $2^{36}$ | $2^{171}$ |
| Mixture (our) | $7(192$-bit) | $2^{27}$ | $2^{32}$ | $2^{152}$ |
| Mixture (our) | $7(192+256)$ | $2^{27}$ | $2^{40}$ | $2^{144}$ |

## Summary and open questions

- We broke a 20 year old attack complexity barrier on 5 round AES, improving it by a factor of 1000
- We obtained an improved "practical data and memory" attack on 7 round AES
- Is it possible to extend our new attacks to larger versions of AES?
- Can our results be used to attack schemes which use reduced $4 / 5$ round AES as a component?

