
Extended Functionality Attacks on IoT Devices: The Case of Smart Lights
(Invited Paper)

Eyal Ronen, Adi Shamir
Computer Science department
Weizmann Institute of Science

Rehovot, Israel
{eyal.ronen,adi.shamir}@weizmann.ac.il

Abstract—In this paper we consider the security aspects of
Internet of Things (IoT) devices, which bridge the physical and
virtual worlds. We propose a new taxonomy of attacks, which
classifies them into four broad categories. The most interesting
category (which we call functionality extension attacks) uses
the designed functionality of the IoT device to achieve a totally
different effect. To demonstrate this type of attack, we consider
the case of smart lights (whose original functionality is just to
control the color and intensity of the lights in a particular
room) and show how to use them to achieve unrelated effects.
In the first attack, we use smart lights as a covert LIFI
communication system to exfiltrate data from a highly secure
(or even fully airgapped) office building. We implemented the
attack and were able to read the leaked data from a distance
of over 100 meters using only cheap and readily available
equipment. In another attack, we showed that an attacker can
strobe the lights at a frequency which may trigger seizures
in people suffering from photosensitive epilepsy (in the same
way that rapidly flashing video games can cause such seizures).
In our experiments, we have tested both high-end and lower-
end smart light systems, ranging from an expensive Philips
HUE system to a cheap system manufactured by LimitlessLED.
In addition, we consider other weaknesses of the systems we
tested, and propose feasible remedies for the problems we
found.

1. Introduction

The Internet of Things (IoT) is currently one of the
hottest buzzwords, and many analysts and consulting firms
publish extremely bullish estimates of its potential economic
impact. For example, a white paper released by the McKin-
sey consulting group in June 2015 [1] estimates that within
ten years, the total value of IoT devices and services will
range between 4 and 11 trillion dollars, which represents up
to 11% of the world’s economy. With such wildly optimistic
forecasts, it is not surprising to find hundreds of papers pub-
lished about the security aspects of IoT devices, describing
a large variety of potential attacks on many concrete types
of IoT devices.

While there is currently no consensus about the exact
definition of IoT devices, most researchers define them as

networked devices which bridge the physical and virtual
worlds. IoT devices usually have some particular func-
tionality which was designed to lead from the physical
world to the virtual world (e.g., by remotely monitoring the
user’s heartbeat), or from the virtual world to the physical
world (e.g., by controlling the room’s temperature via the
internet) or going in both directions (e.g., by processing the
user’s spoken instructions to control his TV). In contrast, a
standard PC can carry out arbitrary computations but has no
predesigned physical functionality, and thus we usually do
not consider it as an IoT device.

In this paper, we would like to introduce a new taxonomy
of attacks on IoT devices, which is based on how the attacker
deviates from their “official” functionality. We noticed that
almost all the attack ideas published so far can be clustered
into the following four broad types of attacking behavior:

1) Ignoring the functionality
2) Reducing the functionality
3) Misusing the functionality
4) Extending the functionality

In the first type of attack, the attacker ignores the intended
physical functionality of the IoT device, and considers it
only as a standard computing device which is connected to
the LAN (local area network) and/or to the internet. For
example, a hacker may combine many compromised IoT
devices into a botnet which can be used to send spam or
to mine bitcoins. Alternatively, he may try to penetrate the
victim’s home network and infect his computers by exploit-
ing the presence of IoT devices on the network, regardless
of whether they are a smart electricity meter, or a washing
machine which can order additional detergent. In fact, we
can expect the victim’s IoT devices to be the best attack
vectors for hackers since there are going to be many cheap
devices made by a variety of small companies with minimal
security protections, and it will probably be impossible to
upgrade or patch their discovered vulnerabilities.

While attacks of this type can pose a serious security
threat, in our opinion they are the least interesting type
of attack from a research point of view, since they are
applicable to essentially any networked computing device
and are not unique to IoT devices. Attacks on networked
computers had been studied for decades, and we have a good

understanding of both the possible attacks and the possible
defenses.

In the second type of attack, the attacker tries to kill or
limit the designed functionality of the IoT device: The TV
will stop working, the refrigerator will not cool its contents,
the lights will not turn on, etc. This can be done by malicious
hackers in order to annoy an individual or organization, to
inflict financial loss, or to create large scale chaos and panic.
In some cases the consequences of lost functionality can be
more serious: For example, in internet-connected medical
devices such attacks can be fatal. Once again, we are al-
ready aware of many such denial-of-service attacks on PC’s
(where a malware infection can kill the operating system or
delete some user files). However, the broader scope of IoT
devices opens up interesting new possibilities. In particular,
the attacker can use ransomware to temporarily lock an
expensive physical device and demand a large payment to
restore its functionality. For example, most TV’s sold today
have smart features which enable them to surf the internet,
but they have no firewalls, no antivirus protection, and no
monthly security updates. It is quite easy to infect a large
screen TV with malware which will display an unremovable
splash message demanding the payment of several bitcoins
in order to make the TV usable. Alternatively, the hacker
can infect a smart refrigerator, and threaten the user that
unless he pays, all the food in his freezer will be spoiled
within a few hours. Note that such an attack on TV’s and
refrigerators is much more effective than on home computers
since even a cautious user has no way to backup or reinstall
a clean version of the device’s operating system, and it is
much harder to haul large and heavy devices to a repair shop
than to bring a PC to a technician.

The third kind of attack uses rather than destroys the
designed functionality of the physical device, but does it in
an incorrect or an unauthorized way. For example, a climate
control device is supposed to cool the house in the summer
and to heat it in the winter, but a hacker can reverse this
behaviour and cause considerable discomfort. In another
example, the hacker can turn on all the lights and open
all the faucets as soon as the user leaves home for a long
vacation. However, most of these attacks are likely to be
irritating pranks rather than serious problems.

By far the most interesting type of attack is the last
cluster, in which the attacker extends the designed function-
ality of the IoT device, and uses it in order to achieve a
completely different and unexpected physical effect. This
requires more imagination and sophistication, since it is not
clear how a hacker can use a smart air conditioner to start
a fire, or how he can use an internet-connected Roomba in
order to unlock the front door in the victim’s house. Such
unexpected effects may be popular in TV shows such as
MacGyver, but in practice they are not easy to achieve.

In this paper we will explore some unexpected applica-
tions of connected LEDs, and use them to demonstrate such
functionality extending attacks.

1.1. Smart connected LEDs

Connected LEDs are smart light bulbs that are connected
(directly or with the aid of a light controller) to a local LAN,
thus allowing the user to control brightness and sometimes
color from his computer or smartphone. This enables more
advanced features such as connecting the light to an alarm
clock, or flickering the room’s light when new email is
received. Connected LEDs have been a rising trend in the
last few years. In 2012 Philips released the connected LED
system Hue, which was named ”Product of the year” by
Forbes tech magazine [2]. In the same year, LIFX and
LimitlessLED made successful kickstarter crowd funding
campaigns to build their connected systems. In recent years
many big and small players have entered this growing mar-
ket. This trend had grown from smart home enthusiasts to
large scale public systems with Philips providing connected
lighting solutions to hospitals [3], factories [4] and even
cities [5].

Along with the many benefits and new features, this
technology also introduces new risks from the virtual world
to our physical lives, and vice versa, since today’s connected
products are not always designed with security in mind.

For example, we have seen a completely insecure setup
process that requires the user to send the password of his
WIFI router over the air in an unencrypted from (in the Lim-
itlessLED system we tested); Non existing (LimitlessLED)
or unsecured authentication schemes (In the Philips Hue
system [6]), that allow any user in the network to control
the LEDs. In addition, we have also used in our attacks
undocumented and sometimes unintended API options that
allow malicious users to misuse and extend the functionality
of the connected LEDs.

1.2. Our attacks

1.2.1. Creating a covert channel. In order to protect sen-
sitive data, an organization may want to separate its internal
network from the Internet. This might be done by imple-
menting a security gateway with data loss prevention (DLP)
capabilities, or even by employing a complete air gaped
separation in top secret networks. Sophisticated attackers
can try to infect those networks with malware using one
time access (either physical or virtual). However, it is much
harder to find a reliable and continuous exfiltration channel
to leak out sensitive data.

Let us assume that such an organization chooses to
implement a smart connected light solution, and connects it
to its internal sensitive network. We describe how an attacker
can use the connected LEDs to create a covert channel.

The basic idea is to misuse the LED’s API to switch
back and forth between two light intensities, under the
following seemingly contradictory conditions: The two light
intensities should be close enough to make the transition
imperceptible to the human eye, but robustly distinguishable
by a light sensor. Fortunately, this is made possible by the
fact that most LED lights adjust their luminosity by rapidly
switching between on and off states and adjusting the duty

Figure 1. The receiver

cycle. Since the sensor can easily distinguish between such
extreme states and accurately measure the duty cycle, it can
robustly measure small changes in the light intensity even in
the presence of other lights, air turbulence, and other sources
of noise.

We built a optical receiver that can accurately read the
data from a distance of over 100 meters by measuring the
exact duration and frequency of those flickers.

1.2.2. Creating epileptic seizures with strobed light.
The risk of epileptic seizures caused by strobed lighting
is well known. Our ability to produce crafted signals from
the LEDs that we tested, can enable an attacker to create
strobes in the most sensitive frequencies. Such an attack
could be directed at hospitals, schools and other public
buildings using connected LEDs.

2. Experimental Setup

2.1. Overview

Our experimental setup includes two main parts:

1) A transmitting setup that includes a smart LED
light bulb, and a controller connected to a PC
running our software. Both of them are standard
unmodified smart light components.

2) A receiving setup that includes a laptop, light sen-
sor, Arduino board and telescope (Figure 1).

2.2. Building the optical receiver

Our goal was to build a cheap, lightweight and portable
setup. As we will see later, our requirements were to detect
slight changes in light intensity at interval as small as 10
microseconds, and thus we needed a sampling rate of around
100 KHz. We tried using a smartphone’s light sensor, but
this option was ruled out as the sensors available on standard

smartphones could only measure in the millisecond range.
Hence we decided to build a custom device to implement
our attacks.

2.2.1. Light sensor. The most commonly used light sensors
are photo-resistors or LDRs (light-dependent resistor). The
light is measured by reading the voltage divided between the
LDR and a serially connected resistor. However this type of
sensors has a latency of up to 10 milliseconds which is not
fast enough for our requirements.

We chose to use the TAOS TC3200 Color light-to-
frequency converter. This sensor converts light intensity to
digital frequency output, that for high light intensity can
go up to 500 KHz. In addition, It has a very low latency
(around 100 nanoseconds). As long as the light source is
strong, and our measuring rate is high, we can achieve a
very high resolution both in the intensity level and in the
time domain.

2.2.2. Arduino. To decode out leak channel we require the
ability to measure and collect the light sensor’s frequency
output at a very high rate and for long periods of time.
As this option is only available in high end and expensive
scopes, we customized the low level drivers of a 16 MHz
CPU Arduino board to allow us to sample the light sensor
at a high rate. The Arduino comes with a hardware counter
that allows us to count the number of rising or falling edges
of the sensor’s output. We sample this hardware counter at
10 micro second intervals (100Khz sampling rate), and send
it to a laptop (using 160 CPU cycles to measure and send).
The post-processing of the data is done on the laptop.

2.2.3. Optics. To decode the leaked data from a long dis-
tance we used a 12in Meade LX200 amateur’s telescope.
The telescope served a dual purpose:

1) Reducing outside light noise by focusing only on
the LED.

2) Focusing the flickering light on the small sensor to
increase the light intensity measured.

We directed the telescope towards the LED, and mounted
the light sensor above the eyepiece as seen in Figure 2. We
adjusted the focus of the telescope so that light emitted by
the LED was concentrated on the light sensitive part of the
sensor.

In Figure 3 we can see a preliminary test of the leak
channel in a long corridor from a distance of over 50 meters,
with lots of other light sources along the corridor. In later
measurements conducted outside the building we achieved
ranges of over 100 meters.

3. Attack Description

We tested two connected lighting systems:

1) Philips Lux - a high end white lighting solution
by Philips’ lighting department. This light system
and the color version called Hue are the most

Figure 2. The sensor

Figure 3. Testing the leak channel

prominent players in the market. We bought a
starter kit containing 9 Watt 750 Lumens light bulbs
(model LWB004 software version 66012040) and a
controller (model PHDL00 software version 1.0).

2) LimitlessLED - A cheap lighting solution that
started as a Kickstarter project. It sells the same
products under different brand names (we used the
one called MiLight). We bought 6 Watt 400 Lumens
light bulb with version 3 controller.

We chose those systems as both of them have open APIs

which are published and supported by the manufactures [7]
[8].

To understand our attack, we need to understand the
way the connected LEDs work, the abilities and limitations
of their controllers, and how human light perception works.

3.1. Smart connected LED systems

Unlike normal bulbs, smart LED bulbs are designed to
be always connected to a power source. They are turned on
and off using commands sent by wireless communication
from a controlling unit.

In most LED bulbs you can control the power state
(on/off), brightness, and in color bulbs also the color of
the light. The user can usually operate the light bulb by two
main methods

1) A standalone smart switch or remote operated by
touch.

2) An application running on a smartphone or com-
puter that connects to a controller using the user’s
LAN and Internet connections.

3.1.1. The LED bulb. Smart LED bulbs are usually com-
posed of the following parts:

1) RF receiver (and sometimes transmitter) which al-
lows the bulb to communicate with the controller.
While some of the smart bulbs (such as LIFX) can
connect directly to a network using WIFI or Blue-
tooth, most of the bulbs use cheaper RF communi-
cation and are controlled by a dedicated controller.
For example Philips and other companies use a
protocol called Light Link [9] over an interface
planned for IoT and smart home usage called Zig-
Bee. Those communication channels usually have
low bandwidth of around 1 KB/s.

2) Processing unit which is responsible to process and
execute the commands received. The processing
unit usually controls the LEDs by using PWM
(pulse width modulation) signals. The processing
unit usually translates the commands into more
complex operation. For example, when increasing
the brightness, the processing unit increases the
brightness incrementally over a short period to
avoid sharp light changes that most people find
unpleasant (for our attacks we had to find ways
to bypass this smoothing feature).

3) Drivers and LEDs. Each bulb usually contains a set
of LEDs. In white bulbs the light is generated either
from a combination of multiple colored LEDs, or
by use of phosphors and one type of LED. The
brightness level of the bulb is determined by the
signal received by the driver that turns the LED
on and off at a very fast rate. The brightness is
determined by the ON duty cycle. For example,
LimitlessLED has about 27 levels of brightness
using a PWM with a frequency of around 3Khz,
while Philips Lux has 256 brightness levels using

a PWM with a frequency of around 20Khz. To
achieve different colors smart LED bulbs use a
combination of monochromatic LEDs, and using
the same PWM technique to control each of the
LEDs brightness in order to generate a full color
range.

3.1.2. The controller. Most of today’s systems have a
dedicated controller that acts as the gateway between the
Internet or LAN and the lights. The controller uses an RF
transmitter to send commands to the lights (and sometimes
a receiver to receive the light’s status). It also has a control
interface that is connected to the LAN, and sometimes to the
Internet or to a cloud service. Most types of controller can
control a number of different lights, and different groups of
light, allowing the user to use one controller to separately
control the lights in different rooms in the house.

The controller usually enforces restrictions on the rate
of commands sent in the system. This might be due to
bottleneck issues or as a type of safety method to prevent
intended or unintended misuse of the light system.

3.2. Human flicker fusion threshold

The human ability to perceive changes in brightness or
color is very complex. Vast empirical research had been
conducted in this field. In recent years some of this research
was used to design flicker free LED lighting with smooth
colors.

One might assume that humans can’t detect flickers at
a rate above the 24 Hz used in movies and televisions.
However, depending on the intensity and color, people can
in fact detect flickers at 60 Hz [10], and in some cases of
fast movement, a phenomena called phantom array may be
perceived even at 200 Hz [11].

To be sure that our covert channel will not be detected
we have to flicker at over 60 Hz (over this frequency, the
flickering will be fused and seen as reduced brightness).
To preserve the same brightness level our flickering has to
be done as a PWM signal with very high duty cycle. The
threshold is also dependent on the light intensity and the
contrast. As reducing the average light intensity is not a
valid option (lights are used to illuminate and it will look
suspicious if they become dimmer then expected), the other
option is to flicker between two close levels of brightness,
at the top of the brightness range.

3.3. Leak Method

We looked into several different leak methods. The
methods were required to comply with 2 different and
somewhat conflicting requirements:

1) Robust - should be resilient to interferences such as
other light sources (light bulbs, computer screens,
sunlight etc.) and should be easily detectable from
a long distance.

2) Not perceivable to the human eye.

3.4. Measuring brightness

Both of the controllers we tested have a recommended
rate limit of 10 commands per second, which would nor-
mally result in a maximum of 5 Hz flicker frequency. This
frequency is well below the flicker fusion threshold, and is
very prone to errors from jitters on the network. To address
that, we tried to use small oscillations in the brightness level.

Due to the PWM duty cycle method used to control
brightness in LED, there are 2 ways to detect the brightness:

1) Average light intensity - measure the averaged in-
tensity over 1 or more PWM’s periods. This is
easy to measure but is very prone to outside light
interferences and has very small contrast between
different levels.

2) Measuring the PWM duty cycle - We can detect
different brightness levels by accurately measuring
the PWM’s duty cycles, using the fact that in reality
the LED switches between 0% and 100% intensities
which are easily distinguishable. This requires a
much faster sampling rate, but is very robust to light
noise, and there is a very high contrast between the
on and off periods.

3.4.1. Measuring brightens changes.
1) LimitlessLED has only 27 brightness levels (which

in fact reduce to 24 as the 3 top levels were the
same). Unfortunately the changes between adjacent
brightness levels were in fact visible to a human
observer .

2) Philips Lux has 256 different brightness levels. To
provide smooth light Lux works at a very high
frequency of 20 KHz or 50 micro seconds. Assum-
ing linear changes in duty cycle we will need to
measure differences of around 200 nanoseconds in
a period of time between adjacent brightness level.
To achieve that we have to use very responsive light
sensors and high end measuring equipment.

3.4.2. Creating a crafted PWM signal. To be able to create
and measure a reliable covert channel we need the ability
to create at least 2 PWM light signals with the following
characteristics:

1) Similar duty cycle (to maintain perceivable bright-
ness

2) Off period shorter than about 10 milliseconds (bel-
low the flicker threshold).

3) Measurable difference in either Period or duty cycle
between the signals.

As both lighting systems’ published APIs didn’t allow us to
create such PWM, we had to find undocumented ways.

4. Hacking the LEDs

4.1. LimitlessLED

4.1.1. Security flaws in the setup process. The first se-
curity issue was encountered when we tried connecting

to the LED’s controller. Although the controller uses a
standard USB port for power, it does not use this interface
for communication. The controller communicates using 2
wireless interfaces:

1) 2.4 GHz RF interface to communicate with the
LEDs.

2) WIFI control interface to communicate with smart-
phones and computers.

To setup the controller as part of the user’s WIFI network,
the user should send the controller his private WIFI pass-
word. This is done in the following manner:

1) Upon first power on or after factory reset, the
controller boots up as a WIFI hotspot of an un-
encrypted network.

2) The user is requested to join this network with his
smartphone.

3) Using the provided Android or iOS application, the
user choose the WIFI network the controller should
join, and sends the required password unencrypted
(!) over the controller’s WIFI.

4) After rebooting, the controller joins the user’s cho-
sen encrypted WIFI network using the password it
received.

An adversary that can sniff the WIFI communication dur-
ing the setup process will acquire the user’s secret WIFI
password and gain access.

A more elaborated attack can allow an adversary to
leak the WIFI password even after the setup process. Let’s
assume the attacker infected a computer inside the the
network with a malware. As there is no user authentication
for the controller, the malware can change the controller’s
WIFI in the same manner that the application does using
the available API. This will cause the controller to reboot
without the ability to connect to the user’s WIFI. As the user
will have no means to communicate with the controller, he
will be forced to do a factory reset and repeat the setup
process. The attacker will sniff the setup process and the
password. It is worth mentioning that there is no way for
the user to differentiate between this attack and any standard
malfunction of the controller.

4.1.2. The controller’s API. The controller’s API is a set
of UDP commands sent to the controller’s IP or to the
networks’ broadcast IP. The commands to the bulbs are sent
to port 8899, while the settings of the controller are at port
48899. The commands are not encrypted or signed and any
member of the WIFI network can change the state of the
bulbs.

The commands are sent in the UDP payload as a short
series of bytes with a termination byte of 0x55. For example,
the light on command is:

IPHEADER UDPHEADER 0x45 0x00 0x55

and the light off command is:

IPHEADER UDPHEADER 0x41 0x00 0x55

16000 16200 16400 16600 16800 17000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED med brightness commands
100KHz sample rate

Figure 4. Medium brightness level

0 500000 1000000 1500000 2000000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED 0 low brightness commands
20KHz sample rate

Figure 5. Full brightness

The set brightness command is 0x4e followed by the bright-
ness level between 0x02 (lowest brightness) and 0x1b (full
brightness) followed by termination byte 0x55. In particular,
the full brightness command is:

IPHEADER UDPHEADER 0x4e 0x1b 0x55

Starting from version 3 of the API, the termination byte is
optional.

4.1.3. Going over the speed barrier. As in other LEDs, the
LimitlessLED bulb controls the brightness by changing the
duty cycle of a PWM signal, as seen in Figure 4 for medium
brightness. The figure shows the light intensity over time.
The light intensity is measured by the frequency outputted
by our light sensor (stronger light corresponds to higher
frequency). The time is measured in microseconds. Figure 4
is a zoom in on part of the measurement. The high frequency
parts correspond to the on period in the duty cycle and the
low frequency parts correspond to the off time.

0 500000 1000000 1500000 2000000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED 3 low brightness commands
20KHz sample rate

(a) Low brightness - 3 commands

0 500000 1000000 1500000 2000000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED 3 med brightness commands
20KHz sample rate

(b) Medium brightness - 3 commands

0 500000 1000000 1500000 2000000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED 10 low brightness commands
20KHz sample rate

(c) Low brightness - 10 commands

0 500000 1000000 1500000 2000000
Time [microseconds]

0

100

200

300

400

500

600

700

800
Li

gh
t s

en
so

r f
re

qu
en

cy
 [K

hz
]

LimitlessLED repeated cmd after 220 bytes
20KHz sample rate

(d) Low brightness - 10 commands repeated twice

Figure 6. Different commands effects

The LED’s drivers and hardware are capable of PWM
cycle period of 3 KHz, and very high resolution of duty
cycle to support smooth changes between brightness levels.
However the controllers API only allow for 27 brightness
levels and control rate of less than 10 commands per second
or 5 HZ flickers (and is very unreliable at that rate).

After some experimenting we discovered that the con-
troller does not interpret the commands, but only parses the
UDP packet and broadcast the payload to the LEDs in the
group. The controllers read till the end of the packet or the
termination byte 0x55 and send those bytes over the air at a
rate of about 1 KBytes/s. When we omitted the termination
byte, we were able to concatenate multiple commands up to
the MTU (maximum transmission unit - the largest allowed
packet size) of the network.

We have seen that decreasing the brightness even by one
level causes a visible effect. However, the LED implements
a smoothing algorithm when changing brightness levels,

slowly changing the PWM duty cycle between the starting
and target level. We start from full brightness level (100%
duty cycle) as seen in Figure 5. We then send a single
command concatenating a long series of low brightness
commands followed by high brightness command. That
causes the LED to start a smooth decrease in the duty cycle,
but to stop and increase it back before the effect is visible
to the naked eye.

We can control the signal created by changing the target
brightness level (lower target levels create faster decrease
in duty cycle). We can also control the exact timing of
the change between decreasing and increasing of the duty
cycle by the number of low brightness commands we send
(repeated commands do not affect the LED, but postpone
the timing of the next high brightness command by 2 ms).

In Figure 6a and Figure 6b we can see the different
effects caused by a series of 3 low brightness commands
followed by high brightness commands relative to 3 medium

200000 205000 210000 215000 220000 225000
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

LimitlessLED 10 med brightness commands
100KHz sample rate

Figure 7. Decreasing brightness effect in high resolution

brightness commands followed by high brightness com-
mands. In Figure 6a and Figure 6c we can see the dif-
ferent effect caused by a series of low brightness com-
mands followed by high brightness commands relative to
10 low brightness commands followed by high brightness
commands. In Figure 6d we can see the effect of repeating
the command series 2 times in one UDP packet. It enables
us to create very accurately timed events. The two drops
in intensity are 440 milliseconds apart (220 commands * 2
bytes per command * 1 millisecond per byte).

Using those options we can create different transmitted
symbols in the covert channel, which are easily distinguish-
able by our optical detector, but are not perceivable by the
human eye. From those symbols we can reliably read several
bits per second (depended on the specific scenario). We can
also craft high contrast signals at the relevant frequencies
that may induce epilepsy seizures in photosensitive people.

It is worth noticing that our measurements suffer from
the same fusion effect of the human eye. Because our sample
rate is low, we view off period shorter than our sampling
intervals as medium intensity - the average between high and
zero intensity. Figure 7 shows this effect. As the duty cycle
decreases after a medium brightness command, we pass the
point from off time of less than 10 micro seconds (our
sampling interval) to more than 10 micro seconds. We see
this point as the first time we have intervals of zero intensity.
This is not the precise time due to phase differences between
our measurements period and the duty cycle period.

4.2. Philips Lux

4.2.1. Going over the speed barrier. Lux provides a much
finer control over brightness levels (256 levels), but due to
the high frequency rate of the PWM, it is harder to measure
those differences. Instead of of relying on the PWM signal
generated by the different brightness levels, we used an
undocumented API command to generate a PWM signal
tailored to our specific covert channel requirements.

In 2012 Philips released a YouTube video [12] showing
the effects of an undocumented strobe effect in Hue lights.
In 2013 Leon Meijer [13] managed to reproduce the effect
using an undocumented option called Points Symbol. This
was done by magnifying a computer screen briefly seen in
the demonstration video and reading the command. Several
different strobing options were found by Meijer and others,
but there is little understanding of the way this API works.
It was discovered that the first byte of the command controls
the speed of the strobe, and some combinations of the other
bytes resulted in different colored strobe effects.

We have seen that this option has similar effects in the
Lux light, and tried to use it to create fast strobes with
different speeds (using the first byte) to create a strobe with
small off periods, that will not be visible to the human
eye. Unfortunately we discovered that after receiving such
a command, the light will blink shortly before starting to
strobe, and that causes a visual effect. After some additional
trials we discovered that we can send a command in this
format (SB is a byte value of the speed and OB is the byte
controlling the off period):

SB 0x00 0xFF 0xFF 0xFF OB 0xFF
0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

As long as we repeatedly sent commands with the same
value in the speed byte, there will be no flickering (apart
from the first command the can be send on power on to
avoid any visible flickering effect). With different off bytes
we can create different short off times (lower values mean
longer off periods), easily measured by our set up. For speed
byte value of 0x40 and off byte of value 0xfa, the off time
is 310 microseconds (Figure 8a) and for value of 0xfc the
off time is 190 microseconds (Figure 8b).

Meijer and others have warned about the risk of epilepsy
due to this undocumented strobe effect. The combined effect
of poor authentication, our ability to accurately control the
strobe timing and duty cycle, and the growing spread of
Philips’ connected products in public areas such as children
hospitals [3] is a big concern. Interestingly Philips had
recently announced in their products developers’ web page
that they will discontinue the support of point symbols from
December 2015 due to maintenance difficulties [8].

4.2.2. Leaking data using the Philips Lux’s standard
API. After this recent announcement by Philips, we were
looking for leak methods using only the standard API.
We tried again to measure the PWM signal generated by
brightness levels changes directly. Philips Lux has 255
different brightness levels, and the difference between two
close levels is imperceptible to the human eye. However as
stated before, this involves measuring small off intervals of
200 nanoseconds.

To test this we used our light sensor, and a 10 Msa/s
(Mega samples per second) analog scope. At the maximum
brightness and close range, our light sensor output frequency
is around 840Khz which we sampled at 10 MHz. When the
brightness level is changed from full brightness (100% duty

4200 4400 4600 4800 5000 5200
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

Philips Lux - speed 0x40 duty 0xfa
100KHz sample rate

(a) 310 microseconds off period

15800 16000 16200 16400 16600
Time [microseconds]

0

100

200

300

400

500

600

700

800

Li
gh

t s
en

so
r f

re
qu

en
cy

 [K
hz

]

Philips Lux - speed 0x40 duty 0xfc
100KHz sample rate

(b) 190 microseconds off period

Figure 8. Different Philips speed effects

cycle) to any lower brightness level, an off period is added,
which creates a measurable phase shift in the square wave
signal produced by the light sensor. In particular, we were
able to differentiate between brightness levels of 255 and
253 at close range. Using more sensitive light sensors and
higher rate sampling, we believe that it will be possible to
use this method to leak data to similar ranges as our other
methods.

5. Results

We created covert channels with the LimitlessLED and
the Philips Lux connected LEDs. Using our portable ex-
perimental set up, we were able to accurately detect two
different symbols from the Philips Lux light from a range of
over 100 meters. This building block can be used to covertly
leak several bits per second, while using our optical receiver
at a safe distance from our target’s apartment or office.

The attack we have shown can leak data even from
airgapped and Tempest protected networks, with no wireless
connections (some connected products can be controlled by
wired connections). As lighting in offices is turned on most
hours of the day, our slow channel can be used to leak more
then 10KB per day. That is enough bandwidth to leak private
encryption keys and passwords.

Our attack was implemented using only readily available
equipment which can be bought for less then $1000 on
ebay. We used only the available APIs of the controllers,
and did not run any unauthorized code on the controllers or
LEDs. In addition we did not attempt to preform any reverse
engineering or extensive fuzzing.

Using the available APIs we were also able to use both
types of LEDs to create strobes of light at frequency ranges
that are known to induce seizures in people suffering from
photosensitive epilepsy.

6. Conclusions

The results we have shown were due to specific over-
looked or unpublished features of the systems. However
there will always be new ways of exploiting IoT products
to compromise the network, or to use the network to create
unintended effects in the physical world. As large organiza-
tions will try to use these new solutions they are likely to
introduce new security risks, and motivate hackers to find
more vulnerabilities.

We believe that it is necessary to focus on security issues
during the design, implementation and integration of IoT.
For example:

1) IoT designers can use standard security protocols.
TLS protocol, with signed certificates that include
the specific device name and serial number can
be used for the control API. The application can
allow the user to verify the specific product he
bought. We can use passwords randomly generated
by the application and TLS protected channel to
maintain the same setup procedure Philips currently
employs, while preventing unauthorized entities on
the network from eavesdropping or sending com-
mands to the controller. A similar procedure can
protect the LimitlessLED setup process.

2) We should limit the IoT API to the necessary
minimum. Dropping the undocumented Point Sym-
bol API in Philips products is a step in the right
direction. Another example will be to decrease the
number of supported brightness levels so that the
difference between two close levels will be perceiv-
able by the human observer.

3) The implementation should be pen tested. A simple
security code review would have shown that the
LimitlessLED controller does not verify the length
of the commands he receive.

4) We should consider the way that IoT devices are
integrated. We can use Philips’ smart light solution
for cities [5] as a case study. It is advisable to sep-
arate the lights control network from the Internet to
protect against attacks such as the blackout attacks
suggested in [6]. Connecting the lights to a critical
infrastructure network, might expose the networks
to attacks such as the ones described here.

Such security measures will make it harder for attackers to
exploit IoT devices in the way we described in this paper,
but the risk still remains. Researchers and the IoT industry
must find ways to improve the security of the IoT systems
and networks while maintaining their usability.

References

[1] (2015) Unlocking the potential of the internet of things. [Online].
Available: http://www.mckinsey.com/insights/business technology/
the internet of things the value of digitizing the physical world

[2] S. Porges. (2012) Forbes magazine
. [Online]. Available: http://www.forbes.com/sites/sethporges/2012/
12/28/the-best-product-of-2012-the-philips-hue-led-lighting-system/

[3] Philips. [Online]. Available: http://www.lighting.philips.com/in en/
projects/phoenixchildrenshospital.wpd

[4] S. Higginbotham. (2015) You can introduce the industrial internet
with a single light bulb. [Online]. Available: http://fortune.com/2015/
04/23/industrial-internet-light-bulb/

[5] Philips. [Online]. Available: http://www.lighting.philips.com/main/
cases/cases/parks-and-plazas/hoogeveen-city-center.html

[6] N. Dhanjani. (2013) Hacking lightbulbs: Security eval-
uation of the philips hue personal wireless light-
ing system. [Online]. Available: http://www.dhanjani.com/docs/
HackingLighbulbsHueDhanjani2013.pdf

[7] Limitlessled technical developer opensource api. [Online]. Available:
http://www.limitlessled.com/dev/

[8] Hue’s developers program. [Online]. Available: http://www.
developers.meethue.com/

[9] [Online]. Available: http://www.zigbee.org/zigbee-for-developers/
applicationstandards/zigbee-light-link/

[10] S. Hecht and S. Shlaer, “Intermittent stimulation by light v. the
relation between intensity and critical frequency for different parts
of the spectrum,” The Journal of general physiology, vol. 19, no. 6,
pp. 965–977, 1936.

[11] W. A. Hershberger and J. S. Jordan, “The phantom array: a perisac-
cadic illusion of visual direction,” The Psychological Record, vol. 48,
no. 1, p. 2, 2012.

[12] (2012) Philips hue strob effect video. [Online]. Available: https:
//www.youtube.com/watch?v=CVh4V5QyVQY

[13] L. Meijer. (2013) Do ’hue’ want a strobe up there?

