
The 9 Lives of Bleichenbacher's CAT:
New Cache ATtacks on TLS

Implementations

Eyal Ronen, Robert Gillham, Daniel Genkin,
Adi Shamir, David Wong and Yuval Yarom

Transport Layer Security (TLS)

• The most widely used cryptographic protocol
• Provides communication security (https, VPN, etc.)
• TLS handshake is used for authentication and

secure key exchange
• TLS Record layer protects the communication
• Allows for cryptographic agility using different

cipher suites

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy
• Still widely used (Dec 2018)
• ~6% by Mozilla's Telemetry and

ICSI Certificate Notary

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy
• Still widely used (Dec 2018)
• ~6% by Mozilla's Telemetry and

ICSI Certificate Notary
• Better alternatives now available (e.g. Ephemeral ECDH)

RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy
• Still widely used (Dec 2018)
• ~6% by Mozilla's Telemetry and

ICSI Certificate Notary
• Better alternatives now available (e.g. Ephemeral ECDH)
• Supported for backwards compatibility

9 lives of Bleichenbacher’s CAT
• We tested the latest version of 9 different TLS implementations

9 lives of Bleichenbacher’s CAT
• We tested the latest version of 9 different TLS implementations

• 7 found vulnerable to new cache based RSA padding attacks

9 lives of Bleichenbacher’s CAT
• We tested the latest version of 9 different TLS implementations

• 7 found vulnerable to new cache based RSA padding attacks

• Multiple vulnerabilities in different layers of the protocol

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack
• Cause modern client and server to use RSA KX

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack
• Cause modern client and server to use RSA KX

• Novel parallelization technique for RSA padding oracle attacks

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack
• Cause modern client and server to use RSA KX

• Novel parallelization technique for RSA padding oracle attacks

• Break 100% of the connections to servers that use vulnerable

implementations

9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack
• Cause modern client and server to use RSA KX

• Novel parallelization technique for RSA padding oracle attacks

• Break 100% of the connections to servers that use vulnerable

implementations

• Works also if client doesn’t support RSA KX

RSA Encryption

RSA Encryption

• Nice math, but how can we use it on real data?

RSA Encryption

• Nice math, but how can we use it on real data?

• There are several real world problems

Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

• me < N, logarithm over the reals is easy

• m should be larger

Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

• me < N, logarithm over the reals is easy

• m should be larger

• Assume encryption of Yes/No – value 0 or 1

Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

• me < N, logarithm over the reals is easy

• m should be larger

• Assume encryption of Yes/No – value 0 or 1

• Vulnerable to dictionary attack

• Easy to detect repetitions

• m should be random

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption
preamble

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption
preamble

At least 8
random non
zero bytes

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption
preamble

At least 8
random non
zero bytes

Zero
delimiter

PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length

• Adds randomization

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption
preamble

At least 8
random non
zero bytes

Zero
delimiter

Has specific
TLS structure

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation
Ciphertext C

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation
Ciphertext C

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation
Ciphertext C

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation
Ciphertext C

Starts with 00 02 ?

Requires Side
Channel

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation
Ciphertext C

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

Ciphertext C

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

valid/invalid

Ciphertext C

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

valid/invalid

C2

valid/invalid

Ciphertext C

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

valid/invalid

C2

valid/invalid

Ciphertext C

…

Starts with 00 02 ?

Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

valid/invalid

M = Dec(C)

C2

valid/invalid

Ciphertext C

…

Starts with 00 02 ?

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

ME WANT COOKIE!

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

• Attack scenario for RSA KX:

ME WANT COOKIE!

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

• Attack scenario for RSA KX:
• Sniff TLS handshake and first message

ME WANT COOKIE!

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

• Attack scenario for RSA KX:
• Sniff TLS handshake and first message

• Use Bleich. to decrypt premaster secret

ME WANT COOKIE!

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

• Attack scenario for RSA KX:
• Sniff TLS handshake and first message

• Use Bleich. to decrypt premaster secret

• Decrypt first message

ME WANT COOKIE!

• Session cookies give access to the users’ data
• Are sent in the beginning of each TLS connection

• Attack scenario for RSA KX:
• Sniff TLS handshake and first message

• Use Bleich. to decrypt premaster secret

• Decrypt first message

• COOKIE!

ME WANT COOKIE!

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

• Only 6% of connections use RSA KX

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

• COOKIE?

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

• COOKIE?

• Time to finish attack < 30 sec

ME WANT COOKIE! ALL COOKIES!

• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

• COOKIE?

• Time to finish attack < 30 sec
• Need many queries

• Have time for < 600

•

ME WANT COOKIE! ALL COOKIES!

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

Downgrade attack on Firefox

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack

Downgrade attack on Firefox

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

Downgrade attack on Firefox

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

• Finish the TLS handshake with decrypted

premaster secret

Downgrade attack on Firefox

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

• Finish the TLS handshake with decrypted

premaster secret

• Cookie?

Downgrade attack on Firefox

• We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

• Finish the TLS handshake with decrypted

premaster secret

• Cookie?

• The user will notice the delay

Downgrade attack on Firefox

The Boost of the BEAST
• BEAST like attack can help!

The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is
sent in the first packet

The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is
sent in the first packet

• Need to break just one connection

The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is
sent in the first packet

• Need to break just one connection
• COOKIE!

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

.COM

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

• Most browsers timeout TLS handshake after 30 seconds

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization

• Cookie?

Parallel Downgrade attack

• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization

• Cookie?

• Need at least 2048 sequential

adaptive queries

• Have time for < 600

Parallel Downgrade attack

A little Manger background

• Assume we have the following Manger oracle

A little Manger background

• Assume we have the following Manger oracle

• We start with a blinding phase to find s such that

A little Manger background

• Assume we have the following Manger oracle

• We start with a blinding phase to find s such that

0 N-1

A little Manger background

• Assume we have the following Manger oracle

• We start with a blinding phase to find s such that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

A little Manger background

• Iteratively reduce size of possible interval
• After additional i sequential queries we learn that

0 N-1

• Run k attacks in parallel with i sequential queries each

The Cookie Lattice

• Run k attacks in parallel with i sequential queries each

• Similar to Boneh & Venkatesan’s Hidden Number Problem

The Cookie Lattice

• Run k attacks in parallel with i sequential queries each

• Similar to Boneh & Venkatesan’s Hidden Number Problem
• Finding m is reduced to CVP that we can embed in a SVP lattice

and solve with LLL

The Cookie Lattice

• Run k attacks in parallel with i sequential queries each

• Similar to Boneh & Venkatesan’s Hidden Number Problem
• Finding m is reduced to CVP that we can embed in a SVP lattice

and solve with LLL

• We need just 5 servers to
decrypt 2048 bit RSA
using a Manger oracle

The Cookie Lattice

• Run k attacks in parallel with i sequential queries each

• Similar to Boneh & Venkatesan’s Hidden Number Problem
• Finding m is reduced to CVP that we can embed in a SVP lattice

and solve with LLL

• We need just 5 servers to
decrypt 2048 bit RSA
using a Manger oracle

The Cookie Lattice

The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit

The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit

• The parallel attack requires more queries!

The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit

• The parallel attack requires more queries!

• So why do we do it?

The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit

• The parallel attack requires more queries!

• So why do we do it?

• Tradeoff between the total number of queries and number of
sequential queries

The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit

• The parallel attack requires more queries!

• So why do we do it?

• Tradeoff between the total number of queries and number of
sequential queries

• Allows us to finish attack in less than 30 seconds

Attack Scenario Parallel:
MiTM + Cache timing side channel

Attack Scenario Parallel:
MiTM + Cache timing side channel

Attack Scenario Parallel:
MiTM + Cache timing side channel

Our results

• New Techniques for Microarchitectural Padding Oracle
Attacks, vulnerabilities in 7 out 9 implementations
• PoC for Manger and Bleichenbacher attacks

Our results

• New Techniques for Microarchitectural Padding Oracle
Attacks, vulnerabilities in 7 out 9 implementations
• PoC for Manger and Bleichenbacher attacks

• Parallelization for downgrade attack
• PoC for Manger parallelization using LLL

Disclosure

• We disclosed to:
• OpenSSL, Mozilla’s NSS, Amazon’s s2n, Apple’s CoreTLS,

mbed TLS, wolfSSL, GnuTLS
• All have patched their code, with various levels of success
• Lots of stories…

Recommendation

• Many recommendations for several layers of
mitigations in the paper
• Bottom line Don’t use RSA KX
• It has failed us too many times

Recommendation

• Many recommendations for several layers of
mitigations in the paper
• Bottom line Don’t use RSA KX
• It has failed us too many times

• If you really really really must
• Separate your certificates!
• …

Questions?

• Paper website
https://cat.eyalro.net

• Any questions?

https://cat.eyalro.net/

