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Transport Layer Security (TLS)

• The most widely used cryptographic protocol 
• Provides communication security (https, VPN, etc.)
• TLS handshake is used for authentication and 

secure key exchange 
• TLS Record layer protects the communication
• Allows for cryptographic agility using different 

cipher suites
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RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme 
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy
• Still widely used (Dec 2018)
• ~6% by Mozilla's Telemetry and

ICSI Certificate Notary
• Better alternatives now available (e.g. Ephemeral ECDH)
• Supported for backwards compatibility
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• We tested the latest version of 9 different TLS implementations 

• 7 found vulnerable to new cache based RSA padding attacks 

• Multiple vulnerabilities in different layers of the protocol
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9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what? 
• Only old clients use RSA KX

• We show the feasibility of MiTM downgrade attack
• Cause modern client and server to use RSA KX

• Novel parallelization technique for RSA padding oracle attacks

• Break 100% of the connections to servers that use vulnerable 

implementations

• Works also if client doesn’t support RSA KX
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RSA Encryption

• Nice math, but how can we use it on real data?

• There are several real world problems
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Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

• me < N, logarithm over the reals is easy 

• m should be larger

• Assume encryption of Yes/No – value 0 or 1

• Vulnerable to dictionary attack

• Easy to detect repetitions

• m should be random
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PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA public key length 

• Adds randomization 

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption 
preamble

At least 8 
random non 
zero bytes

Zero 
delimiter

Has specific 
TLS structure
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Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

C1

valid/invalid

M = Dec(C)

C2

valid/invalid

Ciphertext C

…

Starts with 00 02 ?
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• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires  server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

• COOKIE?

• Time to finish attack < 30 sec
• Need many queries

• Have time for < 600

•

ME WANT COOKIE! ALL COOKIES!
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• We can prevent timeout in Firefox’s TLS handshakes using 

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

• Finish the TLS handshake with decrypted 

premaster secret

• Cookie?

• The user will notice the delay

Downgrade attack on Firefox  



The Boost of the BEAST
• BEAST like attack can help!



The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen 
connections in the background, without the user’s knowledge.



The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen 
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is 
sent in the first packet



The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen 
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is 
sent in the first packet

• Need to break just one connection



The Boost of the BEAST
• BEAST like attack can help!

• JavaScript in browser allows the attacker to repeatedly reopen 
connections in the background, without the user’s knowledge.

• At the start of each connection, the same session cookie is 
sent in the first packet

• Need to break just one connection
• COOKIE!



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel

.COM



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel



Attack Scenario Firefox: 
MiTM + Cache timing side channel



• Most browsers timeout TLS handshake after 30 seconds

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization 

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization 

• Cookie?

Parallel Downgrade attack



• Most browsers timeout TLS handshake after 30 seconds

• Many companies reuse certificate on multiple servers

• We can parallelize the attack across multiple servers
• Each server is a separate oracle

• Many previous works mention parallelization 

• Cookie?

• Need at least 2048 sequential 

adaptive queries

• Have time for < 600

Parallel Downgrade attack
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The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit 

• The parallel attack requires more queries! 

• So why do we do it?

• Tradeoff between the total number of queries and number of 
sequential queries

• Allows us to finish attack in less than 30 seconds
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Our results

• New Techniques for Microarchitectural Padding Oracle 
Attacks, vulnerabilities in 7 out 9 implementations
• PoC for Manger and Bleichenbacher attacks

• Parallelization for downgrade attack
• PoC for Manger parallelization using LLL



Disclosure

• We disclosed to:
• OpenSSL, Mozilla’s NSS, Amazon’s s2n, Apple’s CoreTLS, 

mbed TLS, wolfSSL, GnuTLS 
• All have patched their code, with various levels of success
• Lots of stories…
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Recommendation

• Many recommendations for several layers of 
mitigations in the paper 
• Bottom line Don’t use RSA KX
• It has failed us too many times

• If you really really really must
• Separate your certificates!
• …



Questions?

• Paper website
https://cat.eyalro.net

• Any questions?

https://cat.eyalro.net/

