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Transport Layer Security (TLS)

* The most widely used cryptographic protocol
* Provides communication security (https, VPN, etc.)
* TLS handshake is used for authentication and
secure key exchange
* TLS Record layer protects the communication
* Allows for cryptographic agility using different
cipher suites



Transport Record Layer
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RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option
* Long history of practical implementation attacks®

* No forward secrecy HOW 1S

e Still widely used (Dec 2018) THIS

* 6% by Mozilla's Telemetry and STILL A
ICSI Certificate Notary THING?

* Better alternatives now available (e.g. Ephemeral ECDH)
* Supported for backwards compatibility
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9 lives of Bleichenbacher’s CAT

“Those who'll play with cats must expect to be scratched." -- Miguel de
Cervantes, Don Quixote

* We tested 9 different implementations for vulnerably to cache
based RSA padding attacks

* Only BoringSSL and BearSSL were not vulnerable

Data Conv. PKCS #1 v1.5 Verification TLS Mitigation
OpenSSL M M
OpenSSL API M FFTT
Amazon s2n FFFT
MbedTLS I FFTT, FFFT*
Apple CoreTLS FFTT, FFFT, FFFF
Mozilla NSS M M, TTTT, FTTT* FFFF
WolfSSL M M, FFTT FFTT, FFFF
GnuTLS M M, TTTT, FFTT FFTT, FFFT
BoringSSL Not Vulnerable
BearSSL Not Vulnerable
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9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?
 We show the feasibility of MiTM downgrade attack
* Novel parallelization technique for RSA padding oracle attacks
* Assume cache attack against multiple TLS servers
* Use BEAST to boost success probability
* Break 100% of the connections that use vulnerable
implantations
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RSA Encryption

N=p-q (p,q) are primes
d-e=1 mod ¢(N)
c=m° mod NNV

m = c%* mod N

* Nice math, but how can we use it on real data?
* There are several real world problems



Why do we need padding

e Assume e =3, m=1000, N ~ 22048



Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough



Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough

* Assume | want to encrypt the answer to a Yes/No
guestion —value O or 1



Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough
* Assume | want to encrypt the answer to a Yes/No
guestion —value O or 1
* Vulnerable to dictionary attack
e Easy to detect repetitions
* We need to make sure m is random
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PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length
* Adds randomization

* Example for RSA key exchange in TLS 1.2

0x0002 | [non-zero padding] | Ox00 | [48 bytes of premaster secret]

At least 8
random non
zero bytes

Encryption
preamble

Zero
delimiter

Has specific
TLS structure
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Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

8 |
C1
| ———— v
valid/invalid
fl@ < |
g\‘

@‘ Starts with 0002 ?
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Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
valid/invalid
¢x<s < |
L) 2

@‘ < valid/invalid Starts with 00 02 ?

M = Dec(C)



Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
) valid/invalid |
G G,

‘9
‘\ D
@l valid/invalid Starts with 00 02 ?

<

M = Dec(C)

e Similar attack on PKCS #1 v2 OEAP padding scheme
[Manger 2001]



Bleichenbacher’s Attack

* The attack needs some math
* Not going into details here
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ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

e Attack scenario for RSA KX:
* Sniff TLS handshake and first message
e Use Bleich. to decrypt premaster secret

* Decrypt first message
* COOKIE!
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ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack
* Only requires server support for RSA KX
 Works also on TLS 1.3 [JSS 15]
* Require active MiTM attack
* COOKIE?

* Time to finish attack < 30 sec
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Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using
TLS warning alerts [ABDG+15]
* Do MiTM downgrade attack
* Keep session alive during padding attack
* Finish the TLS handshake with decrypted
premaster secret
* Cookie?

* The user will notice the delay
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The Boost of the BEAST
* BEAST like attack can help!

* JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

* At the start of each connection, the same session cookie is
sent in the first packet PO Y

* Need to break just one connection ' s

* COOKIE!
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General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still hlgh
With low probability, require much less T\

BEAST - Try many MiTM downgrade attack
* Need to break just 1 out of 1000
 Cookie?

Need at least 2048 queries

* Have time for < 600
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 Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle
* Many previous works mention parallelization

 Cookie?

* Need at least 2048 sequential
adaptive queries
* Have time for < 600
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 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

logs (bj.i—aj
rii=m-8; —aj; modN <2 82 (bj.i=aj.i)

* Similar Boneh & Venkatesan’s Hidden Number Problem
* Finding m is reduced to CVP that we can embed in a SVP lattice

and solve with LLL

So S3 ... Sk 0
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The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit
* The parallel attack requires more queries!
* So why do we do it?

* Tradeoff between the total number of queries and number of
sequential queries

e Allows us to finish attack in less than 30 seconds
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Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX

But most implementation managed
* VVery hard to implement RSA KX in constant time
* Pseudo-constant time is only pseudo-secure

Data Conv. PKCS #1 v1.5 Verification TLS Mitigation
OpenSSL M M
OpenSSL API M FFTT
Amazon s2n FFFT
MbedTLS I FFTT, FFFT*
Apple CoreTLS FFTT, FFFT, FFFF
Mozilla NSS M M, TTTT, FTTT* FFFF
WolfSSL M M, FFTT FFTT, FFFF
GnuTLS M M, TTTT, FFTT FFTT, FFFT

BoringSSL
BearSSL

Not Vulnerable
Not Vulnerable
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Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard
* We found:
* Conditional padding with zeros for small numbers
* Conditional branching on size of padding

* Timing difference is negligible but easy to detect with
cache attacks (e.g., a conditional call to memset)
* Vulnerabilities arise from low-level serialization functions
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Our results

* New Techniques for Microarchitectural Padding Oracle

Attacks, vulnerabilities in 7 out 9 implementations
* PoC for Manger and Bleichenbacher attacks

. . . 99% OF THE WORLDS COOKIES
* Boosting attack efficacy using BEAST P art:
THE MOA N

 Parallelization for downgrade attack
* PoC for Manger parallelization using LLL

#f occuPY SESAME STREET




Disclosure

 We disclosed to:
* OpenSSL, Mozzila’s NSS, Amazon’s s2n, Apple’s
CoreTLS, mbed TLS, wolfSSL, GnuTLS
* All have patched their code, with various levels of success
* Lots of stories...
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* Any questions?
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