The 9 Lives of Bleichenbacher's CAT:
New Cache ATtacks on TLS
Implementations

Eyal Ronen, Robert Gillham, Daniel Genkin,
Adi Shamir, David Wong and Yuval Yarom

a8 THE UNIVERSITY

z s ADELAIDE

jvaras) rzm /s

WEIZMANN INSTITUTE OF SCIENCE

M @O@ IDATA

IIIIIIIIIIII TELAVIV NO'DM1]IIN
MICHIGAN UNIVERSITY XIN'TN

Talk Outline

Background

Attacking TLS and downgrade attack

RSA padding attack parallelization using CVP
Cache attacks on RSA padding

Conclusions

Transport Layer Security (TLS)

* The most widely used cryptographic protocol
* Provides communication security (https, VPN, etc.)
* TLS handshake is used for authentication and
secure key exchange
* TLS Record layer protects the communication
* Allows for cryptographic agility using different
cipher suites

Transport Record Layer

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option
* Long history of practical implementation attacks®

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme

* Once the most popular TLS key exchange option

* Long history of practical implementation attacks®
* No forward secrecy

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option
* Long history of practical implementation attacks®

* No forward secrecy HOW 1S

* Still widely used (Dec 2018) THIS

* 6% by Mozilla's Telemetry and STILL A
ICSI Certificate Notary THING

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option
* Long history of practical implementation attacks®

* No forward secrecy HOW S

e Still widely used (Dec 2018) THIS

* 6% by Mozilla's Telemetry and STILL A
ICSI Certificate Notary THING?

* Better alternatives now available (e.g. Ephemeral ECDH)

RSA Key Exchange in TLS

e Uses the PKCS #1 v1.5 padding scheme
* Once the most popular TLS key exchange option
* Long history of practical implementation attacks®

* No forward secrecy HOW 1S

e Still widely used (Dec 2018) THIS

* 6% by Mozilla's Telemetry and STILL A
ICSI Certificate Notary THING?

* Better alternatives now available (e.g. Ephemeral ECDH)
* Supported for backwards compatibility

9 lives of Bleichenbacher’s CAT

“Those who'll play with cats must expect to be scratched." -- Miguel de
Cervantes, Don Quixote

9 lives of Bleichenbacher’s CAT

“Those who'll play with cats must expect to be scratched." -- Miguel de
Cervantes, Don Quixote

* We tested 9 different implementations for vulnerably to cache
based RSA padding attacks

9 lives of Bleichenbacher’s CAT

“Those who'll play with cats must expect to be scratched." -- Miguel de
Cervantes, Don Quixote

* We tested 9 different implementations for vulnerably to cache
based RSA padding attacks

* Only BoringSSL and BearSSL were not vulnerable

9 lives of Bleichenbacher’s CAT

“Those who'll play with cats must expect to be scratched." -- Miguel de
Cervantes, Don Quixote

* We tested 9 different implementations for vulnerably to cache
based RSA padding attacks

* Only BoringSSL and BearSSL were not vulnerable

Data Conv. PKCS #1 v1.5 Verification TLS Mitigation
OpenSSL M M
OpenSSL API M FFTT
Amazon s2n FFFT
MbedTLS I FFTT, FFFT*
Apple CoreTLS FFTT, FFFT, FFFF
Mozilla NSS M M, TTTT, FTTT* FFFF
WolfSSL M M, FFTT FFTT, FFFF
GnuTLS M M, TTTT, FFTT FFTT, FFFT
BoringSSL Not Vulnerable
BearSSL Not Vulnerable

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?
 We show the feasibility of MiTM downgrade attack

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?
 We show the feasibility of MiTM downgrade attack
* Novel parallelization technique for RSA padding oracle attacks

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?

 We show the feasibility of MiTM downgrade attack
* Novel parallelization technique for RSA padding oracle attacks
* Assume cache attack against multiple TLS servers

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?

 We show the feasibility of MiTM downgrade attack
* Novel parallelization technique for RSA padding oracle attacks
* Assume cache attack against multiple TLS servers
* Use BEAST to boost success probability

9 lives of Bleichenbacher’s CAT

 We broke 6% of the Internet, so what?
 We show the feasibility of MiTM downgrade attack
* Novel parallelization technique for RSA padding oracle attacks
* Assume cache attack against multiple TLS servers
* Use BEAST to boost success probability
* Break 100% of the connections that use vulnerable
implantations

RSA Encryption

N=p-q (p,q) are primes
d-e=1 mod ¢(N)

c=m° mod NNV

m =c® mod N

RSA Encryption

N=p-q (p,q) are primes
d-e=1 mod ¢(N)
c=m° mod NNV

m = c%* mod N

* Nice math, but how can we use it on real data?

RSA Encryption

N=p-q (p,q) are primes
d-e=1 mod ¢(N)
c=m° mod NNV

m = c%* mod N

* Nice math, but how can we use it on real data?
* There are several real world problems

Why do we need padding

e Assume e =3, m=1000, N ~ 22048

Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough

Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough

* Assume | want to encrypt the answer to a Yes/No
guestion —value O or 1

Why do we need padding

e Assume e =3, m=1000, N ~ 22048
* mé< N, logarithm over the reals is easy
* We need to make sure m is larger enough
* Assume | want to encrypt the answer to a Yes/No
guestion —value O or 1
* Vulnerable to dictionary attack
e Easy to detect repetitions
* We need to make sure m is random

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length
* Adds randomization

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length

e Adds randomization

* Example for RSA key exchange in TLS 1.2

0x0002

[non-zero padding]

0x00

[48 bytes of premaster secret]

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length

e Adds randomization

* Example for RSA key exchange in TLS 1.2

0x0002 | [non-zero padding]

0x00

[48 bytes of premaster secret]

Encryption
preamble

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length

e Adds randomization

* Example for RSA key exchange in TLS 1.2

0x0002 | [non-zero padding]

0x00

[48 bytes of premaster secret]

At least 8
random non
zero bytes

Encryption
preamble

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length
* Adds randomization
* Example for RSA key exchange in TLS 1.2

0x0002 | [non-zero padding]

0x00

[48 bytes of premaster secret]

Encryption
preamble

At least 8
random non
zero bytes

Zero
delimiter

PKCS #1 v1.5 padding scheme

* Used to pad and encrypt the plaintext
* Pads the plaintext to the RSA key length
* Adds randomization

* Example for RSA key exchange in TLS 1.2

0x0002 | [non-zero padding] | Ox00 | [48 bytes of premaster secret]

At least 8
random non
zero bytes

Encryption
preamble

Zero
delimiter

Has specific
TLS structure

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding validation

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding validation

Ciphertext C

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding validation

Ciphertext C

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

8 |
G
| >
7}\}@

@:

Starts with 0002 ?

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

8 |
C1
| ———— v
valid/invalid
fl@ < |
g\‘

@‘ Starts with 0002 ?

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
valid/invalid
¢x<s < |
L) 2

@‘ | valid/invalid ‘ Starts with 00 02 ?

<

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
valid/invalid
¢x<s < |
L) 2

@‘ | valid/invalid ‘ Starts with 00 02 ?

<

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
valid/invalid
¢x<s < |
L) 2

@‘ < valid/invalid Starts with 00 02 ?

M = Dec(C)

Bleichenbacher’s Attack

* 1998: Adaptive chosen-ciphertext attack
* Exploits strict RSA PKCS#1 v1.5 padding valldatlon

Ciphertext C

>
' L >
) valid/invalid |
G G,

‘9
‘\ D
@l valid/invalid Starts with 00 02 ?

<

M = Dec(C)

e Similar attack on PKCS #1 v2 OEAP padding scheme
[Manger 2001]

Bleichenbacher’s Attack

* The attack needs some math
* Not going into details here

g Hhem
PR TS &R\ LI
ndom “1\;’"* &;\\ﬁﬂ‘—"m“c’_
et T8 (5 ©
“{\w\ - PRl
n B

i A ¥
C '&{?‘”‘{‘ e s

e Lo R
pen an mtes whether a
. acke, ®
s ainE o OTR st
Yo o W \:.\\\“‘ ggs 5 an
£ . -\(' Ty)

Blej
chenbacher’s Att
aC

° The
att
‘Million g into details math
message At here
ack”

° |
n ge
on the . I perfOrmanC
les

apep 1indi yyen 88 el o choos® At qent ¥ pdom 50
che Wy a\:w«mv.:, e OF acle Jpethet r"_.ﬂ\\'\‘ mod e ¥ 'S formins
For the first 8 cosstul ¥ Jue 80 set
oo {80 \ mod ™
Mo = { 1B 2B - \‘(
i
arep 2.9 archin ng O ?KC‘E\ conior ind ossal®
arep an ‘5‘1'\1'& ing X\ gear® £ 1 p, the geall for the saly st \m.«"\—
e ¥ intes®? 51 = nf‘.f.,‘w.B'\. suck tha the t'\\v\v.\\‘\&\m colsr) aod 1 PRO
confor® mg-
Srep 2.1 Eea\:ck\'mg iy MOTe han one W cval € C}\'\'xm'\‘:'\ EE
1! and the s 0er of '\\\\&‘\‘\I'x’(\ﬁ n M-t s al \eas 9, the gpalf for |
nalies yeger 8 s g1 such that the '\"\\i\xm\m:\ f'\\‘\.u,.‘\‘ mod s ¥
,piormit g
arep rchind wi one Lorval et Other™ conial
act) one mmﬂ-a\ (e Mi- \'_u_b ‘(\ fhen Fhons A% all Jpeget
T 1 that
a: 1 a2
L ‘_)h. A 1B
- =
it
m'n\) ,
9B + Tl < P 4B+ Tl
" 28 -
antil ¥ the Aphe ertest col8) mod ! \a? ®(D mn’im Ang:
grep 3 me‘cmmg pe set © of s 1ons- Afger S0 pas et fou
M; s u;\m\m\m\
38/. ‘KB/\/rn
M = ma\ mm
B4
l\\
S M/aB/\ besi —
for all | a.b e 1 mu\ - <1 < -
: M 1
jon- cont ains oY one }
{ {sa) mm\ . and pel
1 and &9 o

9\1’&& g the
\; \\\m

grep A:
1 0 &‘--‘\L/\ﬂ a
&;i m= & ‘mm\ n)\\\mmn .
' ﬁ\‘:\\?\wd-\ ¢ ls Jready KCD con

E\emz“:ks‘ giep can |

E;“aicj1
enbacher’s Att
ack

e The

att

e Not g(a)lcnk r.]eEdS some

g into details h matk
ere

4
Milli
lon
* In MESSage
general 0 attackn
erformance d
epend
S

on the
IS operti
talk we ”eed:ues
o kno
W

[Th
e att
ack i
o D IS
ecrypti and
pti ada
ng 2048 bit otive chose
e u. aCk for AN o b\ €
. q IreS Cmp\li \? \\ "
wels -eady PKCD con

at leas
S
equential oracl
€ QUer
les

'x\\x T

gtep ¥ B pding vpen A0 3 i choose gifterent ™ (ntener®
check: By access g v o OTac pethet s ot 9 et hmnm .
Tot pthe B firat «\&w« \\\\\w sg. 5
o | |50} \(mm\x
Mo < \ nB. 4B — U
S —
arep 25 carci® ag for KCS cm:\tm ying ™€ essages
grep 2.8 ‘5‘1'\1 G 'the sez\rck\‘ W Cthen ¢ seatch “for the gmalies { post
pve 3 integer o > i\ 1B such that ! the n\y\\m‘\ox\ colsr) mod © ?X s
conio? ning-
aiep 2 v ming iy MOTe than one int€ erval € _ Orher? FWISes i
1 and fhe \mm\v g ob ety 1o i T at leas 9, the parch for 's
n‘m\\w\ jpheget g 7 BV hak \\w cl)\\&‘\'\{‘\'\ enl g y mod 1 PR
mt'm’ \'n'mfi_
%emc\u one inte val eft- H\\wu e, . cotdt AT
© jokerv® {1 L = 5 _u_h‘_"_(__ fhen hoos® I n\\ m‘“m 3
hei-1 —
it

mn\
Y mod ! i

antil ¥ the \-X\‘)\'x{-\‘\m: {
ﬂf-m‘cmmg the € §
1B+ rn’\\ . (\‘.%B ~
in b,

grep 3
MY mn\m\x B
1 U mm. & \'
e b} o ’
(l:n"./'?:B/ \ < hei —
'{m\\ “ T

T 1
comnt alnE DY one 1

~1 mod and T

i w0 1O

he B

Step l

{“. y\) =

A ‘\ \."\.

ep can DE

Bemr“:ks 2

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

e Attack scenario for RSA KX:

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

e Attack scenario for RSA KX:
* Sniff TLS handshake and first message

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection
* Attack scenario for RSA KX:

* Sniff TLS handshake and first message
* Use Bleich. to decrypt premaster secret

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

e Attack scenario for RSA KX:
* Sniff TLS handshake and first message
* Use Bleich. to decrypt premaster secret
* Decrypt first message

ME WANT COOKIE!

e Session cookies give access to the users’ data
* Are sent in the beginning of each TLS connection

e Attack scenario for RSA KX:
* Sniff TLS handshake and first message
e Use Bleich. to decrypt premaster secret

* Decrypt first message
* COOKIE!

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

Attack Scenario RSA KX:
Sniff + Cache timing side channel

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX
* Use RSA KX vulnerability for downgrade attack

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack
* Only requires server support for RSA KX

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack

* Only requires server support for RSA KX
 Works also on TLS 1.3 [JSS 15]

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack

* Only requires server support for RSA KX
 Works also on TLS 1.3 [JSS 15]
* Require active MiTM attack

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack
* Only requires server support for RSA KX
 Works also on TLS 1.3 [JSS 15]
* Require active MiTM attack
 COOKIE?

ME WANT COOKIE! ALL COOKIES!

* Only 6% of connections use RSA KX

* Use RSA KX vulnerability for downgrade attack
* Only requires server support for RSA KX
 Works also on TLS 1.3 [JSS 15]
* Require active MiTM attack
* COOKIE?

* Time to finish attack < 30 sec

: oS
e ‘ N
- ¥ N) \ p
=i LAY A y
b . L)) .
)

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using
TLS warning alerts [ABDG+15]

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]
* Do MiTM downgrade attack

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

* Do MiTM downgrade attack
* Keep session alive during padding attack

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using
TLS warning alerts [ABDG+15]

* Do MiTM downgrade attack
* Keep session alive during padding attack
* Finish the TLS handshake with decrypted
premaster secret

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using

TLS warning alerts [ABDG+15]

* Do MiTM downgrade attack
e Keep session alive during padding attack
* Finish the TLS handshake with decrypted

premaster secret
e Cookie?

Downgrade attack on Firefox

* We can prevent timeout in Firefox’s TLS handshakes using
TLS warning alerts [ABDG+15]
* Do MiTM downgrade attack
* Keep session alive during padding attack
* Finish the TLS handshake with decrypted
premaster secret
* Cookie?

* The user will notice the delay

The Boost of the BEAST
* BEAST like attack can help!

The Boost of the BEAST
* BEAST like attack can help!

* JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

The Boost of the BEAST
* BEAST like attack can help!

* JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

e At the start of each connection, the same session cookie is
sent in the first packet

The Boost of the BEAST
* BEAST like attack can help!

* JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

e At the start of each connection, the same session cookie is
sent in the first packet

* Need to break just one connection

The Boost of the BEAST
* BEAST like attack can help!

* JavaScript in browser allows the attacker to repeatedly reopen
connections in the background, without the user’s knowledge.

* At the start of each connection, the same session cookie is
sent in the first packet PO Y

* Need to break just one connection ' s

* COOKIE!

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

Attack Scenario Firefox:
MiTM + Cache timing side channel

' \

Attack Scenario Firefox:
MiTM + Cache timing side channel

' \

Attack Scenario Firefox:
MiTM + Cache timing side channel

General Downgrade attack

* |n most browsers we only have 30 seconds to finish the TLS
handshake

General Downgrade attack

* |n most browsers we only have 30 seconds to finish the TLS
handshake
* The expected number of required queries is still high

General Downgrade attack

* |n most browsers we only have 30 seconds to finish the TLS
handshake

* The expected number of required queries is still high

* With low probability, require much less

General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still high

With low probability, require much less

BEAST - Try many MiTM downgrade attack

General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still high

With low probability, require much less

BEAST - Try many MiTM downgrade attack
* Need to break just 1 out of 1000

General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still high

With low probability, require much less

BEAST - Try many MiTM downgrade attack
* Need to break just 1 out of 1000
* Cookie?

General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still high
N

With low probability, require much less

BEAST - Try many MiTM downgrade attack

* Need to break just 1 out of 1000
* Cookie?

Need at least 2048 queries

General Downgrade attack

In most browsers we only have 30 seconds to finish the TLS
handshake

The expected number of required queries is still hlgh
With low probability, require much less T\

BEAST - Try many MiTM downgrade attack
* Need to break just 1 out of 1000
 Cookie?

Need at least 2048 queries

* Have time for < 600

Parallel Downgrade attack

* Many companies reuse certificate on multiple servers

Parallel Downgrade attack

* Many companies reuse certificate on multiple servers
* We can parallelize the attack across multiple servers

Parallel Downgrade attack

* Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle

Parallel Downgrade attack

* Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle
* Many previous works mention parallelization

Parallel Downgrade attack

 Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle

* Many previous works mention parallelization
* Cookie?

Parallel Downgrade attack

 Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle
* Many previous works mention parallelization

 Cookie?
* Need at least 2048 sequential
adaptive queries

Parallel Downgrade attack

 Many companies reuse certificate on multiple servers

* We can parallelize the attack across multiple servers
* Each server is a separate oracle
* Many previous works mention parallelization

 Cookie?

* Need at least 2048 sequential
adaptive queries
* Have time for < 600

A little Manger background

A little Manger background

* Assume we have the following Manger oracle

(1 if ¢ mod N starts with 0x00

\ 0 otherwise

Ma(c) = ¢

A little Manger background

* Assume we have the following Manger oracle

(1 if ¢ mod N starts with 0x00

Ma(c) = <
(<) \O otherwise

* We start with a blinding phase to find s such that
Ma(c-s® mod N)=Ma((m-s)® mod N)=1

m-s mod N < 2log2 N—8

A little Manger background

* Assume we have the following Manger oracle

1 if ¢® mod NN starts with 0x00
Ma(c) =

O otherwise
* We start with a blinding phase to find s such that

Ma(c-s® mod N)= Ma((m-s)° mod N)=1

m-s mod N < 2log2N—8

0

N-1

A little Manger background

* Assume we have the following Manger oracle

1 if ¢® mod NN starts with 0x00
Ma(c) =

O otherwise
* We start with a blinding phase to find s such that

Ma(c-s® mod N)= Ma((m-s)° mod N)=1

m-s mod N < 2log2N—8

0 N-1

A little Manger background

* |teratively reduce size of possible interval

A little Manger background

* |teratively reduce size of possible interval
» After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

A little Manger background

* |teratively reduce size of possible interval
* After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

A little Manger background

* |teratively reduce size of possible interval
e After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

A little Manger background

* |teratively reduce size of possible interval
e After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

A little Manger background

* |teratively reduce size of possible interval
e After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

A little Manger background

* |teratively reduce size of possible interval
e After additional i sequential queries we learn that

m-s mod N € |a;, b;]

ri=m-s—a; mod N < 282 (bi=ai)

\ 4

The Cookie Lattice

 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

rii=m-s; —a;; modN < 9logy (bj,i—aj,:)

The Cookie Lattice

 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

rii=m-s; —a;; modN < 9logy (bj,i—aj,:)

e Similar Boneh & Venkatesan’s Hidden Number Problem

The Cookie Lattice

 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

logs (bj.i—aj
rii=m-8; —aj; modN <2 82 (bj.i=aj.i)

* Similar Boneh & Venkatesan’s Hidden Number Problem
* Finding m is reduced to CVP that we can embed in a SVP lattice

and solve with LLL

So S3 ... Sk 0

N 0 0o ... 0 0

0 N 0o ... 0 0
Mi=1]0 0 N 0 0

0 0 0O ... N 0
al,i 24 a34 ... ag i N - (k‘ — 1)/l€

The Cookie Lattice

 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

rii=m-8; —aj; modN < 9logs (bj,i—aj,i)
* Similar Boneh & Venkatesan’s Hidden Number Problem

* Finding m is reduced to CVP that we can embed in a SVP lattice
and solve with LLL

—51 S9 83 ... Sk 0

N 0 0o ... 0 0

0 N 0o ... 0 0

* We need just 5 servers to e !

decrypt 2048 bit RSA 50 o N 0
al,i 24 a34 ... ag i N - (k‘ — 1)/l€

using a Manger oracle

The Cookie Lattice

 Assume we can run k attacks in parallel with i sequential queries
each, for each attack j we know that

rii=m-s;j—a;; modN < 9logy (bj,i—aj,:)

. Slmllar Boneh & Venkatesan’s Hidden Numbp

and solve with LLL

* We need just 5 servers to M
decrypt 2048 bit RSA
using a Manger oracle

The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit

The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit

* The parallel attack requires more queries!

The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit
* The parallel attack requires more queries!

* So why do we do it?

The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit
* The parallel attack requires more queries!
* So why do we do it?

* Tradeoff between the total number of queries and number of
sequential queries

The Cookie Lattice Tradeoff

* The initial blinding phase is more “expensive” per bit
* The parallel attack requires more queries!
* So why do we do it?

* Tradeoff between the total number of queries and number of
sequential queries

e Allows us to finish attack in less than 30 seconds

Attack Scenario Parallel:
MiTM + Cache timing side channel

N

Attack Scenario Parallel:
MiTM + Cache tlmlng side channel

0

N-(k=1)/k

Attack Scenario Parallel:
MiTM + Cache timing side channel

Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX

Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX
But most implementation managed

Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX
But most implementation managed
* VVery hard to implement RSA KX in constant time

Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX

But most implementation managed
* VVery hard to implement RSA KX in constant time
* Pseudo-constant time is only pseudo-secure

Why is fixing Bleichenbacher so hard?

* Hard to reduce time variability in RSA KX

But most implementation managed
* VVery hard to implement RSA KX in constant time
* Pseudo-constant time is only pseudo-secure

Data Conv. PKCS #1 v1.5 Verification TLS Mitigation
OpenSSL M M
OpenSSL API M FFTT
Amazon s2n FFFT
MbedTLS I FFTT, FFFT*
Apple CoreTLS FFTT, FFFT, FFFF
Mozilla NSS M M, TTTT, FTTT* FFFF
WolfSSL M M, FFTT FFTT, FFFF
GnuTLS M M, TTTT, FFTT FFTT, FFFT

BoringSSL
BearSSL

Not Vulnerable
Not Vulnerable

Data Conversion

* RSA decryption works with big integer numbers

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard

Data Conversion

* RSA decryption works with big integer numbers

* PKCS #1 v1.5 padding scheme works with bytes

* Converting from number to bytes in constant time is hard
* We found:

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard

* We found:
* Conditional padding with zeros for small numbers

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard
* We found:
* Conditional padding with zeros for small numbers
* Conditional branching on size of padding

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard
* We found:
* Conditional padding with zeros for small numbers
* Conditional branching on size of padding

* Timing difference is negligible but easy to detect with
cache attacks (e.g., a conditional call to memset)

Data Conversion

* RSA decryption works with big integer numbers
* PKCS #1 v1.5 padding scheme works with bytes
* Converting from number to bytes in constant time is hard
* We found:
* Conditional padding with zeros for small numbers
* Conditional branching on size of padding

* Timing difference is negligible but easy to detect with
cache attacks (e.g., a conditional call to memset)
* Vulnerabilities arise from low-level serialization functions

PKCS #1 v1.5 Verification

* Requires multiple validity checks

PKCS #1 v1.5 Verification

* Requires multiple validity checks

 We found:

PKCS #1 v1.5 Verification

* Requires multiple validity checks

* We found:
* Conditional calls to memcpy

PKCS #1 v1.5 Verification

* Requires multiple validity checks

* We found:
* Conditional calls to memcpy
* Conditional writes to error log

PKCS #1 v1.5 Verification

* Requires multiple validity checks

 We found:

e Conc
e Conc

e Conc

Itiona
Itiona
Itiona

calls to memcpy
writes to error log
branching on validity checks

PKCS #1 v1.5 Verification

* Requires multiple validity checks

* We found:
* Conditional calls to memcpy
* Conditional writes to error log
* Conditional branching on validity checks

* Again - Timing difference is negligible but easy to detect
with cache attacks

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

 We found:

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

* We found:
* Conditional branching on verification results

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

* We found:
* Conditional branching on verification results
* Conditional memory accesses

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

* We found:
* Conditional branching on verification results
* Conditional memory accesses
* Conditional calls to random key generation

TLS mitigation

e Goal —same behavior if verification succeeds or fails
* Use random key if verification fails

* We found:
* Conditional branching on verification results
* Conditional memory accesses
* Conditional calls to random key generation

* Again - Timing difference is negligible but easy to detect
with cache attacks

Our results

Our results

* New Techniques for Microarchitectural Padding Oracle

Attacks, vulnerabilities in 7 out 9 implementations
* PoC for Manger and Bleichenbacher attacks

Our results

* New Techniques for Microarchitectural Padding Oracle

Attacks, vulnerabilities in 7 out 9 implementations
* PoC for Manger and Bleichenbacher attacks

* Boosting attack efficacy using BEAST

Our results

* New Techniques for Microarchitectural Padding Oracle

Attacks, vulnerabilities in 7 out 9 implementations
* PoC for Manger and Bleichenbacher attacks

. . . 99% OF THE WORLDS COOKIES
* Boosting attack efficacy using BEAST P art:
THE MOA N

 Parallelization for downgrade attack
* PoC for Manger parallelization using LLL

#f occuPY SESAME STREET

Disclosure

 We disclosed to:
* OpenSSL, Mozzila’s NSS, Amazon’s s2n, Apple’s
CoreTLS, mbed TLS, wolfSSL, GnuTLS
* All have patched their code, with various levels of success
* Lots of stories...

Recommendation

* Many recommendations for several layers of
mitigations in the paper
* Bottom line Don’t use RSA KX
* It has failed us too many times

\

I é

Well it’s Groundhog day
RE(

Recommendation

* Many recommendations for several layers of
mitigations in the paper
* Bottom line Don’t use RSA KX
* It has failed us too many times
* If you really really really must ik - 3F§
» Separate your certificates! V. Q

\

Well it’s Groundhog day
RE(

Recommendation

* Many recommendations for several layers of
mitigations in the paper
* Bottom line Don’t use RSA KX
* It has failed us too many times
* If you really really really must ik - 3F§
» Separate your certificates! V. Q

\

e But o lease ju st Well it’s Groundhog day
RE(

BLEICHENBACHERINGS
YOURSELF! 1 Y

Conclusion

* Mitigating padding attacks on RSA is not impossible (but
very close to it)

* Paper website
https://cat.eyalro.net

https://cat.eyalro.net/

Conclusion

* Mitigating padding attacks on RSA is not impossible (but
very close to it)

* Paper website
https://cat.eyalro.net

* Any questions?

https://cat.eyalro.net/

