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Transport Layer Security (TLS)

• The most widely used cryptographic protocol 
• Provides communication security (https, VPN, etc.)
• TLS handshake is used for authentication and 

secure key exchange 
• TLS Record layer protects the communication
• Allows for cryptographic agility using different 

cipher suites
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RSA Key Exchange in TLS

• Uses the PKCS #1 v1.5 padding scheme 
• Once the most popular TLS key exchange option
• Long history of practical implementation attacks*
• No forward secrecy
• Still widely used (Dec 2018)
• ~6% by Mozilla's Telemetry and

ICSI Certificate Notary
• Better alternatives now available (e.g. Ephemeral ECDH)
• Supported for backwards compatibility
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9 lives of Bleichenbacher’s CAT

• We broke 6% of the Internet, so what?  

• We show the feasibility of MiTM downgrade attack

• Novel parallelization technique for RSA padding oracle attacks

• Assume cache attack against multiple TLS servers 

• Use BEAST to boost success probability

• Break 100% of the connections that use vulnerable 

implantations
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• Nice math, but how can we use it on real data?

• There are several real world problems
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Why do we need padding

• Assume e = 3, m = 1000, N ~ 22048

• me < N, logarithm over the reals is easy 

• We need to make sure m is larger enough

• Assume I want to encrypt the answer to a Yes/No 

question – value 0 or 1

• Vulnerable to dictionary attack

• Easy to detect repetitions

• We need to make sure m is random
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PKCS #1 v1.5 padding scheme

• Used to pad and encrypt the plaintext

• Pads the plaintext to the RSA key length 

• Adds randomization 

• Example for RSA key exchange in TLS 1.2

[48 bytes of premaster secret]0x00[non-zero padding] 0x0002

Encryption 
preamble

At least 8 
random non 
zero bytes

Zero 
delimiter

Has specific 
TLS structure
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Bleichenbacher’s Attack

• 1998: Adaptive chosen-ciphertext attack

• Exploits strict RSA PKCS#1 v1.5 padding validation

• Similar attack on PKCS #1 v2 OEAP padding scheme 

[Manger 2001]

C1

valid/invalid

M = Dec(C)

C2

valid/invalid

Ciphertext C

…

Starts with 00 02 ?
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Bleichenbacher’s Attack

• The attack needs some math 
• Not going into details here

• “Million message attack”
• In general performance depends

on the oracle properties

• For this talk we need to know
• The attack is  and adaptive chosen ciphertext attack
• Decrypting 2048 bit RSA encryption requires 

at least 2048 sequential oracle queries 
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• Only 6% of connections use RSA KX

• Use RSA KX vulnerability for downgrade attack
• Only requires  server support for RSA KX

• Works also on TLS 1.3 [JSS 15]

• Require active MiTM attack

• COOKIE?

• Time to finish attack < 30 sec

ME WANT COOKIE! ALL COOKIES!
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• We can prevent timeout in Firefox’s TLS handshakes using 

TLS warning alerts [ABDG+15]

• Do MiTM downgrade attack
• Keep session alive during padding attack

• Finish the TLS handshake with decrypted 

premaster secret

• Cookie?

• The user will notice the delay

Downgrade attack on Firefox  
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• In most browsers we only have 30 seconds to finish the TLS 

handshake

• The expected number of required queries is still high

• With low probability, require much less

• BEAST - Try many MiTM downgrade attack
• Need to break just 1 out of 1000

• Cookie?

• Need at least 2048 queries

• Have time for < 600

General Downgrade attack
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The Cookie Lattice Tradeoff

• The initial blinding phase is more “expensive” per bit 

• The parallel attack requires more queries! 

• So why do we do it?

• Tradeoff between the total number of queries and number of 
sequential queries

• Allows us to finish attack in less than 30 seconds
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Data Conversion

• RSA decryption works with big integer numbers
• PKCS #1 v1.5 padding scheme works with bytes
• Converting from number to bytes in constant time is hard
• We found:
• Conditional padding with zeros for small numbers
• Conditional branching on size of padding

• Timing difference is negligible but easy to detect with 
cache attacks (e.g., a conditional call to memset)

• Vulnerabilities arise from low-level serialization functions
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Our results

• New Techniques for Microarchitectural Padding Oracle 
Attacks, vulnerabilities in 7 out 9 implementations
• PoC for Manger and Bleichenbacher attacks

• Boosting attack efficacy using BEAST

• Parallelization for downgrade attack
• PoC for Manger parallelization using LLL



Disclosure

• We disclosed to:
• OpenSSL, Mozzila’s NSS, Amazon’s s2n, Apple’s 

CoreTLS, mbed TLS, wolfSSL, GnuTLS 
• All have patched their code, with various levels of success
• Lots of stories…
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